Excel =? LLM

In this Q&A about Walmart’s custom-trained, proprietary “My Assistant” language model, I saw an excerpt from another article in which Walmart’s Head of People Product uses Excel as an analogy for generative models.

โ€œ๐˜ˆ๐˜ค๐˜ค๐˜ฐ๐˜ณ๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜—๐˜ฆ๐˜ต๐˜ฆ๐˜ณ๐˜ด๐˜ฐ๐˜ฏ, ๐˜ข๐˜ฏ๐˜บ ๐˜จ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ˆ๐˜ ๐˜ณ๐˜ฐ๐˜ญ๐˜ญ๐˜ฐ๐˜ถ๐˜ต ๐˜ช๐˜ด ๐˜จ๐˜ฐ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ฏ๐˜ค๐˜ฐ๐˜ถ๐˜ฏ๐˜ต๐˜ฆ๐˜ณ ๐˜ข ๐˜ค๐˜ฉ๐˜ข๐˜ฏ๐˜จ๐˜ฆ ๐˜ค๐˜ถ๐˜ณ๐˜ท๐˜ฆ ๐˜ฏ๐˜ฐ๐˜ต ๐˜ถ๐˜ฏ๐˜ญ๐˜ช๐˜ฌ๐˜ฆ ๐˜ธ๐˜ฉ๐˜ข๐˜ต ๐˜”๐˜ช๐˜ค๐˜ณ๐˜ฐ๐˜ด๐˜ฐ๐˜ง๐˜ต ๐˜Œ๐˜น๐˜ค๐˜ฆ๐˜ญ ๐˜ฆ๐˜น๐˜ฑ๐˜ฆ๐˜ณ๐˜ช๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ๐˜ฅ ๐˜ช๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ 1980๐˜ด ๐˜ฃ๐˜ฆ๐˜ง๐˜ฐ๐˜ณ๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ช๐˜ฏ๐˜จ ๐˜ข๐˜ค๐˜ค๐˜ฆ๐˜ฑ๐˜ต๐˜ฆ๐˜ฅ ๐˜ข๐˜ด ๐˜ค๐˜ฐ๐˜ณ๐˜ฑ๐˜ฐ๐˜ณ๐˜ข๐˜ต๐˜ฆ ๐˜จ๐˜ฐ๐˜ด๐˜ฑ๐˜ฆ๐˜ญ. ๐˜š๐˜ช๐˜ฎ๐˜ช๐˜ญ๐˜ข๐˜ณ ๐˜ต๐˜ฐ ๐˜ฉ๐˜ฐ๐˜ธ ๐˜ฆ๐˜ข๐˜ณ๐˜ญ๐˜บ ๐˜ถ๐˜ด๐˜ฆ๐˜ณ๐˜ด ๐˜ฐ๐˜ง ๐˜”๐˜ช๐˜ค๐˜ณ๐˜ฐ๐˜ด๐˜ฐ๐˜ง๐˜ต ๐˜Œ๐˜น๐˜ค๐˜ฆ๐˜ญ ๐˜ฉ๐˜ข๐˜ฅ ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ต๐˜ณ๐˜ข๐˜ช๐˜ฏ๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ ๐˜ฉ๐˜ฐ๐˜ธ ๐˜ต๐˜ฐ ๐˜ฉ๐˜ข๐˜ณ๐˜ฏ๐˜ฆ๐˜ด๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฑ๐˜ฐ๐˜ธ๐˜ฆ๐˜ณ ๐˜ฐ๐˜ง ๐˜ข ๐˜—๐˜ช๐˜ท๐˜ฐ๐˜ต๐˜›๐˜ข๐˜ฃ๐˜ญ๐˜ฆ ๐˜ข๐˜ฏ๐˜ฅ ๐˜๐˜“๐˜–๐˜–๐˜’๐˜œ๐˜— ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ถ๐˜ญ๐˜ข๐˜ด, ๐˜จ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ˆ๐˜ ๐˜ถ๐˜ด๐˜ฆ๐˜ณ๐˜ด ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ต๐˜ฐ ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฎ๐˜ฑ๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฉ๐˜ช๐˜จ๐˜ฉ-๐˜ช๐˜ฎ๐˜ฑ๐˜ข๐˜ค๐˜ต ๐˜ถ๐˜ด๐˜ฆ ๐˜ค๐˜ข๐˜ด๐˜ฆ๐˜ด ๐˜ต๐˜ฐ ๐˜ต๐˜ณ๐˜ถ๐˜ญ๐˜บ ๐˜ฉ๐˜ข๐˜ณ๐˜ฏ๐˜ฆ๐˜ด๐˜ด ๐˜ช๐˜ต๐˜ด ๐˜ฑ๐˜ฐ๐˜ธ๐˜ฆ๐˜ณ.โ€

2024 will be the year that more companies adopt generative models as an aid to their employees. But it is interesting to use an analogy to deterministic functions like PivotTable and VLOOKUP to drive the adoption of a black box model with probabilistic outputs. Let’s see how that plays out for Walmart.

Source

From explainable to predictive, and to causal

The use of AI algorithms for drug discovery is one of the most promising areas for its societal value. Historically, most deep learning approaches in this area have used black box models, providing little insight into discoveries.

A recent study published in Nature uses explainable graph neural networks to address the urgent need for new antibiotics due to the ongoing antibiotic resistance crisis.

The study begins with the testing and labeling of 39,312 compounds,

– which become training data for four ensembles of graph neural networks,
– which make predictions for a total of 12,076,365 compounds in the test set (hits vs. non-hits based on antibiotic activity and cytotoxicity),
– of which 3,646 compounds are selected based on the probability that they will act as antibiotics without being toxic to humans,
– which are then reduced to 283 compounds by a series of empirical steps,
– and to 4 compounds by experimental testing,
– and of the 4, two “drug-like” compounds are tested in mice,

and one of the two is found to be effective against MRSA infections in this controlled experiment, thus closing the causal loop.

This is a great application of combining explainable predictive models with causal identification, and demonstrates that machine learning models used in high-stakes areas can be explainable without compromising performance.

Source

Dose-response analysis using difference-in-differences

The dose-response work of Callaway, Goodman-Bacon, and Pedro Sant’Anna seems to be coming along nicely. If you haven’t had enough of the parallel trends assumption, get ready for the “strong” parallel trends assumption!

“๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ฑ๐˜ข๐˜ฑ๐˜ฆ๐˜ณ, ๐˜ธ๐˜ฆ ๐˜ฅ๐˜ช๐˜ด๐˜ค๐˜ถ๐˜ด๐˜ด ๐˜ข๐˜ฏ ๐˜ข๐˜ญ๐˜ต๐˜ฆ๐˜ณ๐˜ฏ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ฃ๐˜ถ๐˜ต ๐˜ต๐˜บ๐˜ฑ๐˜ช๐˜ค๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ด๐˜ต๐˜ณ๐˜ฐ๐˜ฏ๐˜จ๐˜ฆ๐˜ณ ๐˜ข๐˜ด๐˜ด๐˜ถ๐˜ฎ๐˜ฑ๐˜ต๐˜ช๐˜ฐ๐˜ฏ, ๐˜ธ๐˜ฉ๐˜ช๐˜ค๐˜ฉ ๐˜ธ๐˜ฆ ๐˜ค๐˜ข๐˜ญ๐˜ญ ๐˜ด๐˜ต๐˜ณ๐˜ฐ๐˜ฏ๐˜จ ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ญ๐˜ญ๐˜ฆ๐˜ญ ๐˜ต๐˜ณ๐˜ฆ๐˜ฏ๐˜ฅ๐˜ด. ๐˜š๐˜ต๐˜ณ๐˜ฐ๐˜ฏ๐˜จ ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ญ๐˜ญ๐˜ฆ๐˜ญ ๐˜ต๐˜ณ๐˜ฆ๐˜ฏ๐˜ฅ๐˜ด ๐˜ฐ๐˜ง๐˜ต๐˜ฆ๐˜ฏ ๐˜ณ๐˜ฆ๐˜ด๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ต๐˜ด ๐˜ต๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฆ๐˜ง๐˜ง๐˜ฆ๐˜ค๐˜ต ๐˜ฉ๐˜ฆ๐˜ต๐˜ฆ๐˜ณ๐˜ฐ๐˜จ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ช๐˜ต๐˜บ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ซ๐˜ถ๐˜ด๐˜ต๐˜ช๐˜ง๐˜ช๐˜ฆ๐˜ด ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ข๐˜ณ๐˜ช๐˜ฏ๐˜จ ๐˜ฅ๐˜ฐ๐˜ด๐˜ฆ ๐˜จ๐˜ณ๐˜ฐ๐˜ถ๐˜ฑ๐˜ด. ๐˜๐˜ฏ๐˜ต๐˜ถ๐˜ช๐˜ต๐˜ช๐˜ท๐˜ฆ๐˜ญ๐˜บ, ๐˜ต๐˜ฐ ๐˜ฃ๐˜ฆ ๐˜ข ๐˜จ๐˜ฐ๐˜ฐ๐˜ฅ ๐˜ค๐˜ฐ๐˜ถ๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ง๐˜ข๐˜ค๐˜ต๐˜ถ๐˜ข๐˜ญ, ๐˜ญ๐˜ฐ๐˜ธ๐˜ฆ๐˜ณ-๐˜ฅ๐˜ฐ๐˜ด๐˜ฆ ๐˜ถ๐˜ฏ๐˜ช๐˜ต๐˜ด ๐˜ฎ๐˜ถ๐˜ด๐˜ต ๐˜ณ๐˜ฆ๐˜ง๐˜ญ๐˜ฆ๐˜ค๐˜ต ๐˜ฉ๐˜ฐ๐˜ธ ๐˜ฉ๐˜ช๐˜จ๐˜ฉ๐˜ฆ๐˜ณ-๐˜ฅ๐˜ฐ๐˜ด๐˜ฆ ๐˜ถ๐˜ฏ๐˜ช๐˜ต๐˜ดโ€™ ๐˜ฐ๐˜ถ๐˜ต๐˜ค๐˜ฐ๐˜ฎ๐˜ฆ๐˜ด ๐˜ธ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ค๐˜ฉ๐˜ข๐˜ฏ๐˜จ๐˜ฆ๐˜ฅ ๐˜ธ๐˜ช๐˜ต๐˜ฉ๐˜ฐ๐˜ถ๐˜ต ๐˜ต๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ข๐˜ฏ๐˜ฅ ๐˜ข๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ญ๐˜ฐ๐˜ธ๐˜ฆ๐˜ณ ๐˜ญ๐˜ฆ๐˜ท๐˜ฆ๐˜ญ ๐˜ฐ๐˜ง ๐˜ต๐˜ฉ๐˜ฆ ๐˜ต๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต. ๐˜ž๐˜ฆ ๐˜ด๐˜ฉ๐˜ฐ๐˜ธ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ธ๐˜ฉ๐˜ฆ๐˜ฏ ๐˜ฐ๐˜ฏ๐˜ฆ ๐˜ฐ๐˜ฏ๐˜ญ๐˜บ ๐˜ช๐˜ฎ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ๐˜ด ๐˜ต๐˜ฉ๐˜ฆ โ€œ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ๐˜ข๐˜ณ๐˜ฅโ€ ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ญ๐˜ญ๐˜ฆ๐˜ญ ๐˜ต๐˜ณ๐˜ฆ๐˜ฏ๐˜ฅ๐˜ด ๐˜ข๐˜ด๐˜ด๐˜ถ๐˜ฎ๐˜ฑ๐˜ต๐˜ช๐˜ฐ๐˜ฏ, ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ข๐˜ณ๐˜ช๐˜ด๐˜ฐ๐˜ฏ๐˜ด ๐˜ข๐˜ค๐˜ณ๐˜ฐ๐˜ด๐˜ด ๐˜ต๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฅ๐˜ฐ๐˜ด๐˜ข๐˜จ๐˜ฆ๐˜ด ๐˜ข๐˜ณ๐˜ฆ โ€œ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ข๐˜ฎ๐˜ช๐˜ฏ๐˜ข๐˜ต๐˜ฆ๐˜ฅโ€ ๐˜ธ๐˜ช๐˜ต๐˜ฉ ๐˜ด๐˜ฆ๐˜ญ๐˜ฆ๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ฃ๐˜ช๐˜ข๐˜ด ๐˜ณ๐˜ฆ๐˜ญ๐˜ข๐˜ต๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ต๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต ๐˜ฆ๐˜ง๐˜ง๐˜ฆ๐˜ค๐˜ต ๐˜ฉ๐˜ฆ๐˜ต๐˜ฆ๐˜ณ๐˜ฐ๐˜จ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ช๐˜ต๐˜บ. ๐˜›๐˜ฉ๐˜ถ๐˜ด, ๐˜ธ๐˜ช๐˜ต๐˜ฉ๐˜ฐ๐˜ถ๐˜ต ๐˜ข๐˜ฅ๐˜ฅ๐˜ช๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ ๐˜ด๐˜ต๐˜ณ๐˜ถ๐˜ค๐˜ต๐˜ถ๐˜ณ๐˜ฆ, ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ข๐˜ณ๐˜ช๐˜ด๐˜ฐ๐˜ฏ ๐˜ข๐˜ค๐˜ณ๐˜ฐ๐˜ด๐˜ด ๐˜ฅ๐˜ฐ๐˜ด๐˜ข๐˜จ๐˜ฆ๐˜ด ๐˜ฎ๐˜ข๐˜บ ๐˜ฏ๐˜ฐ๐˜ต ๐˜ช๐˜ฅ๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ง๐˜บ ๐˜ค๐˜ข๐˜ถ๐˜ด๐˜ข๐˜ญ ๐˜ฆ๐˜ง๐˜ง๐˜ฆ๐˜ค๐˜ต๐˜ด. ๐˜›๐˜ฉ๐˜ฆ ๐˜ฑ๐˜ญ๐˜ข๐˜ถ๐˜ด๐˜ช๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜บ ๐˜ฐ๐˜ง ๐˜ด๐˜ต๐˜ณ๐˜ฐ๐˜ฏ๐˜จ ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ญ๐˜ญ๐˜ฆ๐˜ญ ๐˜ต๐˜ณ๐˜ฆ๐˜ฏ๐˜ฅ๐˜ด ๐˜ฅ๐˜ฆ๐˜ฑ๐˜ฆ๐˜ฏ๐˜ฅ๐˜ด ๐˜ฐ๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฆ๐˜ฎ๐˜ฑ๐˜ช๐˜ณ๐˜ช๐˜ค๐˜ข๐˜ญ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ฐ๐˜ง ๐˜ต๐˜ฉ๐˜ฆ ๐˜ข๐˜ฏ๐˜ข๐˜ญ๐˜บ๐˜ด๐˜ช๐˜ด, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ธ๐˜ฆ ๐˜ฅ๐˜ช๐˜ด๐˜ค๐˜ถ๐˜ด๐˜ด ๐˜ด๐˜ฐ๐˜ฎ๐˜ฆ ๐˜ง๐˜ข๐˜ญ๐˜ด๐˜ช๐˜ง๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ด๐˜ต๐˜ณ๐˜ข๐˜ต๐˜ฆ๐˜จ๐˜ช๐˜ฆ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ค๐˜ข๐˜ฏ ๐˜ฃ๐˜ฆ ๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ต๐˜ฐ ๐˜ข๐˜ด๐˜ด๐˜ฆ๐˜ด๐˜ด ๐˜ช๐˜ต.”

Source

Human Creator v. Gen AI

2024 will be the year of lawsuits against generative AI companies. We’ve already had the GitHub Copilot case over assisted coding (https://lnkd.in/eH8Ap-eJ) and the Anthropic case over AI lyrics (https://lnkd.in/eY6UF9Cn). Now the Times joins the fray (https://lnkd.in/e8wHHMzx), and more are likely to follow.

So far, Gen AI companies have defended themselves by arguing fair use and transformative use – that their models create something substantially new and serve a different purpose than the original (thus doesn’t substitute the original, as in Google Books). But recent Supreme Court decisions such as Warhol v. Goldsmith made clear that transformative use claims face high bars.

What might come next?
– New business models for content licensing
– Restrictions on public access to some internal models
– Calls for updated copyright laws and content use regulations
– Technical solutions like attribution, data provenance, and content tagging
– What else?

Dartmouth workshop and imagination

The founding event of artificial intelligence as a field is considered to be the 1956 Dartmouth Workshop in Hanover, New Hampshire.

The proposal listed seven areas of focus for AI: automation of higher-level functions, language models, neural networks, computational efficiency, self-learning, abstraction and generalization from sensor data, and creativity.

These were all revolutionary ideas at the time (and still are), but the one that stands out to me the most is creativity:

“๐˜ˆ ๐˜ง๐˜ข๐˜ช๐˜ณ๐˜ญ๐˜บ ๐˜ข๐˜ต๐˜ต๐˜ณ๐˜ข๐˜ค๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ข๐˜ฏ๐˜ฅ ๐˜บ๐˜ฆ๐˜ต ๐˜ค๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ญ๐˜บ ๐˜ช๐˜ฏ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜ต๐˜ฆ ๐˜ค๐˜ฐ๐˜ฏ๐˜ซ๐˜ฆ๐˜ค๐˜ต๐˜ถ๐˜ณ๐˜ฆ ๐˜ช๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ต๐˜ธ๐˜ฆ๐˜ฆ๐˜ฏ ๐˜ค๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ต๐˜ฉ๐˜ช๐˜ฏ๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ถ๐˜ฏ๐˜ช๐˜ฎ๐˜ข๐˜จ๐˜ช๐˜ฏ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ฆ๐˜ต๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ช๐˜ฏ๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ญ๐˜ช๐˜ฆ๐˜ด ๐˜ช๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ช๐˜ฏ๐˜ซ๐˜ฆ๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ฐ๐˜ง ๐˜ข ๐˜ด๐˜ฐ๐˜ฎ๐˜ฆ ๐˜ณ๐˜ข๐˜ฏ๐˜ฅ๐˜ฐ๐˜ฎ๐˜ฏ๐˜ฆ๐˜ด๐˜ด.”

Today, most generative AI models seem to follow this idea of injecting some randomness. But can a touch of randomness turn ๐˜ถ๐˜ฏ๐˜ช๐˜ฎ๐˜ข๐˜จ๐˜ช๐˜ฏ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ฆ๐˜ต๐˜ฆ๐˜ฏ๐˜ต ๐˜ต๐˜ฉ๐˜ช๐˜ฏ๐˜ฌ๐˜ช๐˜ฏ๐˜จ into ๐˜ค๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ช๐˜ต๐˜บ? Well, this ๐˜ค๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ญ๐˜บ ๐˜ช๐˜ด ๐˜ข๐˜ฏ ๐˜ช๐˜ฏ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜ต๐˜ฆ ๐˜ค๐˜ฐ๐˜ฏ๐˜ซ๐˜ฆ๐˜ค๐˜ต๐˜ถ๐˜ณ๐˜ฆ.

Randomness alone can’t make a model imaginative. Imagination requires an understanding of cause-effect relationships and counterfactual reasoning.

๐˜ˆ๐˜ฏ ๐˜ˆ๐˜ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ ๐˜ค๐˜ข๐˜ฏ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฆ๐˜ค๐˜ต๐˜ญ๐˜บ ๐˜ณ๐˜ฆ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฅ๐˜ถ๐˜ค๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ฐ๐˜ญ๐˜ฐ๐˜ณ๐˜ด ๐˜ฐ๐˜ง ๐˜ข ๐˜ด๐˜ถ๐˜ฏ๐˜ด๐˜ฆ๐˜ต ๐˜ช๐˜ฏ ๐˜ฑ๐˜ช๐˜น๐˜ฆ๐˜ญ๐˜ด, ๐˜บ๐˜ฆ๐˜ต ๐˜ช๐˜ต ๐˜ธ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ง๐˜ข๐˜ช๐˜ญ ๐˜ต๐˜ฐ ๐˜จ๐˜ณ๐˜ข๐˜ด๐˜ฑ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ด๐˜ฑ๐˜ข๐˜ณ๐˜ฌ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ต๐˜ถ๐˜ณ๐˜ฏ๐˜ด ๐˜ข ๐˜ฎ๐˜ฆ๐˜ณ๐˜ฆ ๐˜ฑ๐˜ช๐˜ค๐˜ต๐˜ถ๐˜ณ๐˜ฆ ๐˜ช๐˜ฏ๐˜ต๐˜ฐ ๐˜ข ๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ ๐˜ฐ๐˜ง ๐˜ข๐˜ณ๐˜ต.

That’s why the more exciting potential today seems to lie in creative human input to a model, or in using the output of the model as input to creative human brain.

Source

Modeling unobserved heterogeneity in panel data

Daniel Millimet and Marc F. Bellemare work on an interesting paper on the feasibility of assuming that fixed effects are fixed over long periods in causal inference models. They highlight an overlooked reality that fixed effects may fail to control for unobserved heterogeneity over long periods of time.

One lesson for causal identification using long panels is to think twice before assuming that fixed effects will take care of unobserved heterogeneity.

More on this is in our short post with Duygu Dagli at Data Duets. She uses rapid gentrification as an example. The short format is a new idea to post more often.

Source

“Create original songs in seconds, even if you’ve never made music before”

This is the tag line on boomy.com, a generative AI-based music platform.

We have entered an era where everyone seems to be able to ๐˜ค๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฆ ๐˜ฐ๐˜ณ๐˜ช๐˜จ๐˜ช๐˜ฏ๐˜ข๐˜ญ ๐˜Ÿ๐˜Ÿ๐˜Ÿ ๐˜ช๐˜ฏ ๐˜ด๐˜ฆ๐˜ค๐˜ฐ๐˜ฏ๐˜ฅ๐˜ด, ๐˜ฆ๐˜ท๐˜ฆ๐˜ฏ ๐˜ช๐˜ง ๐˜ต๐˜ฉ๐˜ฆ๐˜บ’๐˜ท๐˜ฆ ๐˜ฏ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ ๐˜ค๐˜ณ๐˜ฆ๐˜ข๐˜ต๐˜ฆ๐˜ฅ ๐˜Ÿ๐˜Ÿ๐˜Ÿ ๐˜ฃ๐˜ฆ๐˜ง๐˜ฐ๐˜ณ๐˜ฆ, a fact that leads to the need for a new vocabulary, since “original” is defined as

– created directly and personally by a particular artist
– not dependent on other people’s ideas

Meanwhile, “Boomy artists have createdย 18,047,099ย original songs” and that ๐˜ด๐˜ฐ๐˜ถ๐˜ฏ๐˜ฅ๐˜ด great.

Imagination (of counterfactuals)

Imagination (of counterfactuals) draws on domain knowledge and creativity and is key to causal reasoning; it is also where humans continue to outperform algorithms. What about the role of data?

๐˜–๐˜ฏ๐˜ฆ ๐˜ต๐˜ณ๐˜ช๐˜ค๐˜ฌ ๐˜ช๐˜ด ๐˜ต๐˜ฐ ๐˜ถ๐˜ด๐˜ฆ ๐˜ฅ๐˜ข๐˜ต๐˜ข ๐˜ข๐˜ด ๐˜ข ๐˜ฉ๐˜ฆ๐˜ญ๐˜ฑ๐˜ง๐˜ถ๐˜ญ ๐˜จ๐˜ถ๐˜ช๐˜ฅ๐˜ฆ, ๐˜ฏ๐˜ฐ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฐ๐˜ฏ๐˜ญ๐˜บ ๐˜จ๐˜ถ๐˜ช๐˜ฅ๐˜ฆ. ๐˜๐˜ต’๐˜ด ๐˜ญ๐˜ช๐˜ฌ๐˜ฆ ๐˜ถ๐˜ด๐˜ช๐˜ฏ๐˜จ ๐˜ข ๐˜ฎ๐˜ข๐˜ฑ. ๐˜ˆ ๐˜ฎ๐˜ข๐˜ฑ ๐˜ค๐˜ข๐˜ฏ ๐˜ต๐˜ฆ๐˜ญ๐˜ญ ๐˜บ๐˜ฐ๐˜ถ ๐˜ธ๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ณ๐˜ฆ๐˜ฆ๐˜ต๐˜ด ๐˜ข๐˜ณ๐˜ฆ, ๐˜ฃ๐˜ถ๐˜ต ๐˜ช๐˜ต ๐˜ค๐˜ข๐˜ฏ’๐˜ต ๐˜ต๐˜ฆ๐˜ญ๐˜ญ ๐˜บ๐˜ฐ๐˜ถ ๐˜ช๐˜ง ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ’๐˜ด ๐˜ข ๐˜ฑ๐˜ข๐˜ณ๐˜ข๐˜ฅ๐˜ฆ. ๐˜๐˜ต ๐˜ค๐˜ข๐˜ฏ’๐˜ต ๐˜ต๐˜ฆ๐˜ญ๐˜ญ ๐˜บ๐˜ฐ๐˜ถ ๐˜ธ๐˜ฉ๐˜ข๐˜ต ๐˜ฆ๐˜ญ๐˜ด๐˜ฆ ๐˜ฎ๐˜ช๐˜จ๐˜ฉ๐˜ต ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ฆ๐˜ฏ ๐˜ฉ๐˜ข๐˜ฑ๐˜ฑ๐˜ฆ๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ฆ๐˜ช๐˜ต๐˜ฉ๐˜ฆ๐˜ณ. ๐˜ ๐˜ฐ๐˜ถ ๐˜ฉ๐˜ข๐˜ท๐˜ฆ ๐˜ต๐˜ฐ ๐˜ญ๐˜ฐ๐˜ฐ๐˜ฌ ๐˜ถ๐˜ฑ ๐˜ง๐˜ณ๐˜ฐ๐˜ฎ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฎ๐˜ข๐˜ฑ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ถ๐˜ด๐˜ฆ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ฆ๐˜บ๐˜ฆ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ฃ๐˜ณ๐˜ข๐˜ช๐˜ฏ.

This map distorts the data on the relative positions of the continents, but it uses the data correctly on their location and size. It’s just as wrong as any other world map, but it makes one look up, think, and imagine.

What might have happened if
– Central America was in the arctic zone and Siberia was subtropical
– Cubaย was off the east coast ofย Canadaย and theย USA
– Japan was off the coasts of Portugal and Spain
– North Korea was part of South Korea
– Taiwanย was next toย France

Source

LLMs vs. creators

Gilbert may have a point here, except for the part about how markets work. This is a popular free market product with a growing number of customers. Today I heard that ChatGPT Plus now has a waiting list. I also find Gilbert’s statement a bit overdramatic, but that’s beside the point. LLMs are useful tools if their limitations are well defined, communicated, and acknowledged, and if the lingering issues of copyright and privacy are resolved.

But if not, and if we continue to treat a computer model as if it had some kind of consciousness and general intelligence, progress will be painful. I’ve expressed this concern several times, using Searle’s Chinese Room argument and pointing out the dangers of so-called “hallucinations” in the hands of well-meaning users who don’t always know what they don’t know.

Source

Exception handling in data science

I started coding in C and used C# before switching to Java (those were the dark days). Today, R and Python make up my daily stack (and I dabble in Julia for fun). Now, in retrospect, one habit I wish the data science community had developed better is exception handling. More often than not, I come across code that is doomed to crash (hey, it’s called an exception for a reason).

The next time you code to analyze data, remember this video of division by zero. This is the pain and suffering your computer goes through when your denominator hits zero. This is also a reminder to appreciate (not complain about) the errors and warnings in R and Python (my former and future students, hear me?).

Received the video in personal communication and happy to add a source.

LLMs are most useful for experts on a topic…

…because experts are more likely to know what they don’t know. When users don’t know what they don’t know, so-called “hallucinations” are less likely to be detected and this seems to be a growing problem, likely exacerbated by the Dunning-Kruger effect. Well, this is my take on them.

In the study cited in the article, several LLM models are asked to summarize news articles to measure how often they “hallucinated” or made up facts.

The LLM models showed different rates of “hallucination”, with OpenAI having the lowest (about 3%), followed by Meta (about 5%), Anthropic’s Claude 2 system (over 8%), and Google’s Palm chat with the highest (27%).

Source

Some advice from my assistant on how to analyze data

๐˜ˆ๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ฅ๐˜ข๐˜ต๐˜ข ๐˜ธ๐˜ช๐˜ต๐˜ฉ ๐˜ข ๐˜ฎ๐˜ช๐˜น ๐˜ฐ๐˜ง ๐˜ด๐˜ฌ๐˜ฆ๐˜ฑ๐˜ต๐˜ช๐˜ค๐˜ช๐˜ด๐˜ฎ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ถ๐˜ณ๐˜ช๐˜ฐ๐˜ด๐˜ช๐˜ต๐˜บ. ๐˜›๐˜ณ๐˜ฆ๐˜ข๐˜ต ๐˜ฅ๐˜ข๐˜ต๐˜ข ๐˜ข๐˜ด ๐˜ข ๐˜ด๐˜ต๐˜ฐ๐˜ณ๐˜บ๐˜ต๐˜ฆ๐˜ญ๐˜ญ๐˜ฆ๐˜ณ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด๐˜ฏ’๐˜ต ๐˜ฅ๐˜ช๐˜ณ๐˜ฆ๐˜ค๐˜ต๐˜ญ๐˜บ ๐˜ต๐˜ฆ๐˜ญ๐˜ญ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ต๐˜ณ๐˜ถ๐˜ต๐˜ฉ, ๐˜ฃ๐˜ถ๐˜ต ๐˜ฐ๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ด ๐˜ค๐˜ญ๐˜ถ๐˜ฆ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต, ๐˜ธ๐˜ช๐˜ต๐˜ฉ ๐˜ณ๐˜ช๐˜จ๐˜ฐ๐˜ณ๐˜ฐ๐˜ถ๐˜ด ๐˜ข๐˜ฏ๐˜ข๐˜ญ๐˜บ๐˜ด๐˜ช๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ค๐˜ณ๐˜ช๐˜ต๐˜ช๐˜ค๐˜ข๐˜ญ ๐˜ต๐˜ฉ๐˜ช๐˜ฏ๐˜ฌ๐˜ช๐˜ฏ๐˜จ, ๐˜ณ๐˜ฆ๐˜ท๐˜ฆ๐˜ข๐˜ญ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฅ๐˜ฆ๐˜ฆ๐˜ฑ๐˜ฆ๐˜ณ ๐˜ฏ๐˜ข๐˜ณ๐˜ณ๐˜ข๐˜ต๐˜ช๐˜ท๐˜ฆ. ๐˜Š๐˜ถ๐˜ญ๐˜ต๐˜ช๐˜ท๐˜ข๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ข๐˜ณ๐˜ต ๐˜ฐ๐˜ง ๐˜ข๐˜ด๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ณ๐˜ช๐˜จ๐˜ฉ๐˜ต ๐˜ฒ๐˜ถ๐˜ฆ๐˜ด๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด -๐˜ฏ๐˜ฐ๐˜ต ๐˜ฐ๐˜ฏ๐˜ญ๐˜บ ๐˜ฐ๐˜ง ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฅ๐˜ข๐˜ต๐˜ข, ๐˜ฃ๐˜ถ๐˜ต ๐˜ข๐˜ญ๐˜ด๐˜ฐ ๐˜ฐ๐˜ง ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ต๐˜ข๐˜ฌ๐˜ฆ๐˜ฉ๐˜ฐ๐˜ญ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด. ๐˜œ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ฐ๐˜ฏ๐˜ต๐˜ฆ๐˜น๐˜ต ๐˜ข๐˜ฏ๐˜ฅ ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ญ๐˜บ๐˜ช๐˜ฏ๐˜จ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ค๐˜ฆ๐˜ด๐˜ด๐˜ฆ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜จ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ณ๐˜ข๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฅ๐˜ข๐˜ต๐˜ข ๐˜ต๐˜ฐ ๐˜ข๐˜ท๐˜ฐ๐˜ช๐˜ฅ ๐˜ฎ๐˜ข๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ช๐˜ฏ๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ ๐˜ฐ๐˜ฏ ๐˜ด๐˜ฆ๐˜ฆ๐˜ฎ๐˜ช๐˜ฏ๐˜จ ๐˜ด๐˜ช๐˜จ๐˜ฏ๐˜ข๐˜ญ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ฎ๐˜ข๐˜บ ๐˜ข๐˜ค๐˜ต๐˜ถ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ฃ๐˜ฆ ๐˜ฏ๐˜ฐ๐˜ช๐˜ด๐˜ฆ. ๐˜ˆ๐˜ฏ๐˜ฅ ๐˜ฏ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ ๐˜ง๐˜ฐ๐˜ณ๐˜จ๐˜ฆ๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ท๐˜ข๐˜ญ๐˜ถ๐˜ฆ ๐˜ฐ๐˜ง ๐˜ค๐˜ฐ๐˜ฎ๐˜ฎ๐˜ถ๐˜ฏ๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ต๐˜ฐ๐˜ณ๐˜บ๐˜ต๐˜ฆ๐˜ญ๐˜ญ๐˜ช๐˜ฏ๐˜จ; ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ช๐˜ฏ๐˜ด๐˜ช๐˜จ๐˜ฉ๐˜ต๐˜ด ๐˜ข๐˜ณ๐˜ฆ ๐˜ฐ๐˜ฏ๐˜ญ๐˜บ ๐˜ข๐˜ด ๐˜ท๐˜ข๐˜ญ๐˜ถ๐˜ข๐˜ฃ๐˜ญ๐˜ฆ ๐˜ข๐˜ด ๐˜บ๐˜ฐ๐˜ถ๐˜ณ ๐˜ข๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜บ ๐˜ต๐˜ฐ ๐˜ฆ๐˜ง๐˜ง๐˜ฆ๐˜ค๐˜ต๐˜ช๐˜ท๐˜ฆ๐˜ญ๐˜บ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฎ๐˜ถ๐˜ฏ๐˜ช๐˜ค๐˜ข๐˜ต๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ๐˜ฎ.

Executive Order on the Safe, Secure, and Trustworthy Development and Use of Artificial Intelligence

The Executive Order defines “AI” as:
“a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations, or decisions influencing real or virtual environments.”

This means that the scope is not limited to generative AI, which is good. Using “AI” as an umbrella term may still not be a good idea for the reasons my assistant lists below but I hope this is a first step in the right direction.

“๐˜ˆ๐˜” ๐˜ข๐˜ด ๐˜ข ๐˜ฃ๐˜ญ๐˜ข๐˜ฏ๐˜ฌ๐˜ฆ๐˜ต ๐˜ต๐˜ฆ๐˜ณ๐˜ฎ

๐˜–๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฑ๐˜ฐ๐˜ด๐˜ช๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ด๐˜ช๐˜ฅ๐˜ฆ, ๐˜ช๐˜ต ๐˜ด๐˜ช๐˜ฎ๐˜ฑ๐˜ญ๐˜ช๐˜ง๐˜ช๐˜ฆ๐˜ด ๐˜ค๐˜ฐ๐˜ฎ๐˜ฎ๐˜ถ๐˜ฏ๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ฃ๐˜บ ๐˜จ๐˜ณ๐˜ฐ๐˜ถ๐˜ฑ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ๐˜จ๐˜ฆ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜ข ๐˜ธ๐˜ช๐˜ฅ๐˜ฆ ๐˜ณ๐˜ข๐˜ฏ๐˜จ๐˜ฆ ๐˜ฐ๐˜ง ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ฆ๐˜ฎ๐˜ถ๐˜ญ๐˜ข๐˜ต๐˜ฆ ๐˜ฉ๐˜ถ๐˜ฎ๐˜ข๐˜ฏ ๐˜ค๐˜ฐ๐˜จ๐˜ฏ๐˜ช๐˜ต๐˜ช๐˜ท๐˜ฆ ๐˜ง๐˜ถ๐˜ฏ๐˜ค๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ด๐˜ถ๐˜ค๐˜ฉ ๐˜ข๐˜ด ๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ๐˜ช๐˜ฏ๐˜จ, ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฃ๐˜ญ๐˜ฆ๐˜ฎ ๐˜ด๐˜ฐ๐˜ญ๐˜ท๐˜ช๐˜ฏ๐˜จ, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฑ๐˜ข๐˜ต๐˜ต๐˜ฆ๐˜ณ๐˜ฏ ๐˜ณ๐˜ฆ๐˜ค๐˜ฐ๐˜จ๐˜ฏ๐˜ช๐˜ต๐˜ช๐˜ฐ๐˜ฏ. ๐˜›๐˜ฉ๐˜ช๐˜ด ๐˜ด๐˜ช๐˜ฎ๐˜ฑ๐˜ญ๐˜ช๐˜ง๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ ๐˜ค๐˜ข๐˜ฏ ๐˜ฃ๐˜ฆ ๐˜ฃ๐˜ฆ๐˜ฏ๐˜ฆ๐˜ง๐˜ช๐˜ค๐˜ช๐˜ข๐˜ญ ๐˜ง๐˜ฐ๐˜ณ ๐˜ฆ๐˜ฅ๐˜ถ๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ข๐˜ญ ๐˜ฑ๐˜ถ๐˜ณ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ๐˜ด, ๐˜ฑ๐˜ฐ๐˜ญ๐˜ช๐˜ค๐˜บ๐˜ฎ๐˜ข๐˜ฌ๐˜ช๐˜ฏ๐˜จ, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฎ๐˜ฐ๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ฑ๐˜ถ๐˜ฃ๐˜ญ๐˜ช๐˜ค ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ๐˜ช๐˜ฏ๐˜จ. ๐˜๐˜ต ๐˜ฑ๐˜ณ๐˜ฐ๐˜ท๐˜ช๐˜ฅ๐˜ฆ๐˜ด ๐˜ข ๐˜ค๐˜ฐ๐˜ฏ๐˜ท๐˜ฆ๐˜ฏ๐˜ช๐˜ฆ๐˜ฏ๐˜ต ๐˜ด๐˜ฉ๐˜ฐ๐˜ณ๐˜ต๐˜ฉ๐˜ข๐˜ฏ๐˜ฅ ๐˜ง๐˜ฐ๐˜ณ ๐˜ฅ๐˜ช๐˜ด๐˜ค๐˜ถ๐˜ด๐˜ด๐˜ช๐˜ฏ๐˜จ ๐˜ช๐˜ฏ๐˜ฏ๐˜ฐ๐˜ท๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ณ๐˜ข๐˜ฏ๐˜จ๐˜ช๐˜ฏ๐˜จ ๐˜ง๐˜ณ๐˜ฐ๐˜ฎ ๐˜ด๐˜ช๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ ๐˜ข๐˜ญ๐˜จ๐˜ฐ๐˜ณ๐˜ช๐˜ต๐˜ฉ๐˜ฎ๐˜ด ๐˜ต๐˜ฐ ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ญ๐˜ฆ๐˜น ๐˜ฏ๐˜ฆ๐˜ถ๐˜ณ๐˜ข๐˜ญ ๐˜ฏ๐˜ฆ๐˜ต๐˜ธ๐˜ฐ๐˜ณ๐˜ฌ๐˜ด ๐˜ธ๐˜ช๐˜ต๐˜ฉ๐˜ฐ๐˜ถ๐˜ต ๐˜จ๐˜ฆ๐˜ต๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ฃ๐˜ฐ๐˜จ๐˜จ๐˜ฆ๐˜ฅ ๐˜ฅ๐˜ฐ๐˜ธ๐˜ฏ ๐˜ช๐˜ฏ ๐˜ต๐˜ฆ๐˜ค๐˜ฉ๐˜ฏ๐˜ช๐˜ค๐˜ข๐˜ญ ๐˜ฅ๐˜ฆ๐˜ต๐˜ข๐˜ช๐˜ญ๐˜ด.

๐˜–๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฅ๐˜ฐ๐˜ธ๐˜ฏ๐˜ด๐˜ช๐˜ฅ๐˜ฆ, ๐˜ฉ๐˜ฐ๐˜ธ๐˜ฆ๐˜ท๐˜ฆ๐˜ณ, ๐˜ต๐˜ฉ๐˜ฆ ๐˜ต๐˜ฆ๐˜ณ๐˜ฎ ๐˜ค๐˜ข๐˜ฏ ๐˜ฃ๐˜ฆ ๐˜ฎ๐˜ช๐˜ด๐˜ญ๐˜ฆ๐˜ข๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ฃ๐˜ฆ๐˜ค๐˜ข๐˜ถ๐˜ด๐˜ฆ ๐˜ฐ๐˜ง ๐˜ช๐˜ต๐˜ด ๐˜ฃ๐˜ณ๐˜ฐ๐˜ข๐˜ฅ ๐˜ด๐˜ค๐˜ฐ๐˜ฑ๐˜ฆ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฑ๐˜ถ๐˜ฃ๐˜ญ๐˜ช๐˜ค’๐˜ด ๐˜ท๐˜ข๐˜ณ๐˜บ๐˜ช๐˜ฏ๐˜จ ๐˜ช๐˜ฏ๐˜ต๐˜ฆ๐˜ณ๐˜ฑ๐˜ณ๐˜ฆ๐˜ต๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ฐ๐˜ง ๐˜ธ๐˜ฉ๐˜ข๐˜ต ๐˜ˆ๐˜ ๐˜ฆ๐˜ฏ๐˜ค๐˜ฐ๐˜ฎ๐˜ฑ๐˜ข๐˜ด๐˜ด๐˜ฆ๐˜ด. ๐˜๐˜ต ๐˜ค๐˜ข๐˜ฏ ๐˜ค๐˜ฐ๐˜ฏ๐˜ง๐˜ญ๐˜ข๐˜ต๐˜ฆ ๐˜ณ๐˜ถ๐˜ฅ๐˜ช๐˜ฎ๐˜ฆ๐˜ฏ๐˜ต๐˜ข๐˜ณ๐˜บ ๐˜ด๐˜ฐ๐˜ง๐˜ต๐˜ธ๐˜ข๐˜ณ๐˜ฆ ๐˜ธ๐˜ช๐˜ต๐˜ฉ ๐˜ข๐˜ฅ๐˜ท๐˜ข๐˜ฏ๐˜ค๐˜ฆ๐˜ฅ ๐˜ฎ๐˜ข๐˜ค๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ ๐˜ญ๐˜ฆ๐˜ข๐˜ณ๐˜ฏ๐˜ช๐˜ฏ๐˜จ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด, ๐˜ญ๐˜ฆ๐˜ข๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜ช๐˜ฏ๐˜ง๐˜ญ๐˜ข๐˜ต๐˜ฆ๐˜ฅ ๐˜ฆ๐˜น๐˜ฑ๐˜ฆ๐˜ค๐˜ต๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ฐ๐˜ณ ๐˜ถ๐˜ฏ๐˜ฅ๐˜ถ๐˜ฆ ๐˜ง๐˜ฆ๐˜ข๐˜ณ. ๐˜๐˜ฏ ๐˜ข๐˜ฅ๐˜ฅ๐˜ช๐˜ต๐˜ช๐˜ฐ๐˜ฏ, ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฃ๐˜ณ๐˜ฐ๐˜ข๐˜ฅ ๐˜ถ๐˜ด๐˜ฆ ๐˜ฐ๐˜ง ๐˜ต๐˜ฉ๐˜ฆ ๐˜ต๐˜ฆ๐˜ณ๐˜ฎ ๐˜ค๐˜ข๐˜ฏ ๐˜ฐ๐˜ฃ๐˜ด๐˜ค๐˜ถ๐˜ณ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฏ๐˜ถ๐˜ข๐˜ฏ๐˜ค๐˜ฆ๐˜ฅ ๐˜ฆ๐˜ต๐˜ฉ๐˜ช๐˜ค๐˜ข๐˜ญ, ๐˜ญ๐˜ฆ๐˜จ๐˜ข๐˜ญ, ๐˜ข๐˜ฏ๐˜ฅ ๐˜ด๐˜ฐ๐˜ค๐˜ช๐˜ฐ๐˜ฆ๐˜ค๐˜ฐ๐˜ฏ๐˜ฐ๐˜ฎ๐˜ช๐˜ค ๐˜ช๐˜ฎ๐˜ฑ๐˜ญ๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ด๐˜ฑ๐˜ฆ๐˜ค๐˜ช๐˜ง๐˜ช๐˜ค ๐˜ต๐˜ฐ ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ˆ๐˜ ๐˜ข๐˜ฑ๐˜ฑ๐˜ญ๐˜ช๐˜ค๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด, ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ๐˜ฆ๐˜ฃ๐˜บ ๐˜ฉ๐˜ช๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ช๐˜ฏ๐˜จ ๐˜ง๐˜ฐ๐˜ค๐˜ถ๐˜ด๐˜ฆ๐˜ฅ ๐˜ฅ๐˜ฆ๐˜ฃ๐˜ข๐˜ต๐˜ฆ ๐˜ข๐˜ฏ๐˜ฅ ๐˜ต๐˜ฉ๐˜ฐ๐˜ถ๐˜จ๐˜ฉ๐˜ต๐˜ง๐˜ถ๐˜ญ ๐˜ณ๐˜ฆ๐˜จ๐˜ถ๐˜ญ๐˜ข๐˜ต๐˜ช๐˜ฐ๐˜ฏ. ๐˜›๐˜ฉ๐˜ฆ ๐˜ฃ๐˜ญ๐˜ข๐˜ฏ๐˜ฌ๐˜ฆ๐˜ต ๐˜ต๐˜ฆ๐˜ณ๐˜ฎ ๐˜ค๐˜ข๐˜ฏ ๐˜ข๐˜ญ๐˜ด๐˜ฐ ๐˜ฐ๐˜ฃ๐˜ด๐˜ค๐˜ถ๐˜ณ๐˜ฆ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ด๐˜ช๐˜จ๐˜ฏ๐˜ช๐˜ง๐˜ช๐˜ค๐˜ข๐˜ฏ๐˜ต ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ค๐˜ฆ๐˜ด ๐˜ช๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ค๐˜ข๐˜ฑ๐˜ข๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜ช๐˜ฆ๐˜ด ๐˜ข๐˜ฏ๐˜ฅ ๐˜ณ๐˜ช๐˜ด๐˜ฌ๐˜ด ๐˜ฐ๐˜ง ๐˜ฅ๐˜ช๐˜ง๐˜ง๐˜ฆ๐˜ณ๐˜ฆ๐˜ฏ๐˜ต ๐˜ˆ๐˜ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ๐˜ด, ๐˜ฑ๐˜ฐ๐˜ต๐˜ฆ๐˜ฏ๐˜ต๐˜ช๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ญ๐˜ฆ๐˜ข๐˜ฅ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜ข ๐˜ฐ๐˜ฏ๐˜ฆ-๐˜ด๐˜ช๐˜ป๐˜ฆ-๐˜ง๐˜ช๐˜ต๐˜ด-๐˜ข๐˜ญ๐˜ญ ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ข๐˜ค๐˜ฉ ๐˜ต๐˜ฐ ๐˜ฑ๐˜ฐ๐˜ญ๐˜ช๐˜ค๐˜บ ๐˜ข๐˜ฏ๐˜ฅ ๐˜จ๐˜ฐ๐˜ท๐˜ฆ๐˜ณ๐˜ฏ๐˜ข๐˜ฏ๐˜ค๐˜ฆ.

Source

Baggage handling at airports

Every time I fly, I am struck by how archaic airport baggage handling still is. Sure, the airline industry is infamous for maintaining its legacy Fortran and Cobol software, but that’s because aviation is a pioneer in using computers to run its operations. Meanwhile, baggage handling remains a bottleneck in air travel because the process is highly manual and inefficient (except for using the same conveyor system that seems to have been in use since 1971).

When robots take over (or assist with) baggage handling, overall passenger satisfaction is likely to improve. Increased use of robots to solve such low-stakes bottleneck problems may also help the public perception of robots.

evoBot looks like one of the robots that can solve this problem. The robot achieves excellent balance using an inverted pendulum design, and can reach speeds of 37 mph and carry over 220 pounds. Pretty impressive.

Not shown in the video, but it can also lift luggage off the ground and deliver it to its destination (airplane or the 1971 conveyor belt). Munich Airport seems to have tested it already. I hope to see it in action soon.

Does ChatGPT know Chinese?

If you ask it, its answer is “Yes.” If you ask it if it “understands” Chinese, its answer is again “Yes” without hesitation. Searle’s 1980 Chinese Room argument is more relevant than ever in the age of LLMs:

๐˜š๐˜ถ๐˜ฑ๐˜ฑ๐˜ฐ๐˜ด๐˜ฆ ๐˜ข ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ (๐˜ฃ๐˜ฐ๐˜น ๐˜ช๐˜ฏ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฑ๐˜ช๐˜ค๐˜ต๐˜ถ๐˜ณ๐˜ฆ) ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ฃ๐˜ฆ๐˜ฉ๐˜ข๐˜ท๐˜ฆ๐˜ด ๐˜ข๐˜ด ๐˜ช๐˜ง ๐˜ช๐˜ต ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ๐˜ด ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ. ๐˜๐˜ต ๐˜ต๐˜ข๐˜ฌ๐˜ฆ๐˜ด ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ ๐˜ค๐˜ฉ๐˜ข๐˜ณ๐˜ข๐˜ค๐˜ต๐˜ฆ๐˜ณ๐˜ด ๐˜ข๐˜ด ๐˜ช๐˜ฏ๐˜ฑ๐˜ถ๐˜ต ๐˜ข๐˜ฏ๐˜ฅ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฅ๐˜ถ๐˜ค๐˜ฆ๐˜ด ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ ๐˜ค๐˜ฉ๐˜ข๐˜ณ๐˜ข๐˜ค๐˜ต๐˜ฆ๐˜ณ๐˜ด ๐˜ข๐˜ด ๐˜ฐ๐˜ถ๐˜ต๐˜ฑ๐˜ถ๐˜ต. ๐˜›๐˜ฉ๐˜ช๐˜ด ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ง๐˜ฐ๐˜ณ๐˜ฎ๐˜ด ๐˜ช๐˜ต๐˜ด ๐˜ต๐˜ข๐˜ด๐˜ฌ ๐˜ด๐˜ฐ ๐˜ค๐˜ฐ๐˜ฏ๐˜ท๐˜ช๐˜ฏ๐˜ค๐˜ช๐˜ฏ๐˜จ๐˜ญ๐˜บ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ช๐˜ต ๐˜ค๐˜ฐ๐˜ฎ๐˜ง๐˜ฐ๐˜ณ๐˜ต๐˜ข๐˜ฃ๐˜ญ๐˜บ ๐˜ฑ๐˜ข๐˜ด๐˜ด๐˜ฆ๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜›๐˜ถ๐˜ณ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฆ๐˜ด๐˜ต: ๐˜ช๐˜ต ๐˜ค๐˜ฐ๐˜ฏ๐˜ท๐˜ช๐˜ฏ๐˜ค๐˜ฆ๐˜ด ๐˜ข ๐˜ฉ๐˜ถ๐˜ฎ๐˜ข๐˜ฏ ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ ๐˜ด๐˜ฑ๐˜ฆ๐˜ข๐˜ฌ๐˜ฆ๐˜ณ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฎ๐˜ฐ๐˜ฅ๐˜ฆ๐˜ญ ๐˜ช๐˜ด ๐˜ช๐˜ต๐˜ด๐˜ฆ๐˜ญ๐˜ง ๐˜ข ๐˜ญ๐˜ช๐˜ท๐˜ฆ ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ ๐˜ด๐˜ฑ๐˜ฆ๐˜ข๐˜ฌ๐˜ฆ๐˜ณ. ๐˜›๐˜ฐ ๐˜ข๐˜ญ๐˜ญ ๐˜ฐ๐˜ง ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฒ๐˜ถ๐˜ฆ๐˜ด๐˜ต๐˜ช๐˜ฐ๐˜ฏ๐˜ด ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฑ๐˜ฆ๐˜ณ๐˜ด๐˜ฐ๐˜ฏ ๐˜ข๐˜ด๐˜ฌ๐˜ด, ๐˜ช๐˜ต ๐˜ฎ๐˜ข๐˜ฌ๐˜ฆ๐˜ด ๐˜ข๐˜ฑ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฑ๐˜ณ๐˜ช๐˜ข๐˜ต๐˜ฆ ๐˜ณ๐˜ฆ๐˜ด๐˜ฑ๐˜ฐ๐˜ฏ๐˜ด๐˜ฆ๐˜ด, ๐˜ด๐˜ถ๐˜ค๐˜ฉ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ข๐˜ฏ๐˜บ ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ ๐˜ด๐˜ฑ๐˜ฆ๐˜ข๐˜ฌ๐˜ฆ๐˜ณ ๐˜ธ๐˜ฐ๐˜ถ๐˜ญ๐˜ฅ ๐˜ฃ๐˜ฆ ๐˜ค๐˜ฐ๐˜ฏ๐˜ท๐˜ช๐˜ฏ๐˜ค๐˜ฆ๐˜ฅ ๐˜ต๐˜ฉ๐˜ข๐˜ต ๐˜ต๐˜ฉ๐˜ฆ๐˜บ ๐˜ข๐˜ณ๐˜ฆ ๐˜ต๐˜ข๐˜ญ๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฐ ๐˜ข๐˜ฏ๐˜ฐ๐˜ต๐˜ฉ๐˜ฆ๐˜ณ ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ-๐˜ด๐˜ฑ๐˜ฆ๐˜ข๐˜ฌ๐˜ช๐˜ฏ๐˜จ ๐˜ฉ๐˜ถ๐˜ฎ๐˜ข๐˜ฏ ๐˜ฃ๐˜ฆ๐˜ช๐˜ฏ๐˜จ. ๐˜๐˜ฏ ๐˜ต๐˜ฉ๐˜ช๐˜ด ๐˜ค๐˜ข๐˜ด๐˜ฆ, ๐˜ฅ๐˜ฐ๐˜ฆ๐˜ด ๐˜ต๐˜ฉ๐˜ฆ ๐˜ฎ๐˜ข๐˜ค๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ ๐˜ญ๐˜ช๐˜ต๐˜ฆ๐˜ณ๐˜ข๐˜ญ๐˜ญ๐˜บ ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ? ๐˜–๐˜ณ ๐˜ช๐˜ด ๐˜ช๐˜ต ๐˜ฎ๐˜ฆ๐˜ณ๐˜ฆ๐˜ญ๐˜บ ๐˜ด๐˜ช๐˜ฎ๐˜ถ๐˜ญ๐˜ข๐˜ต๐˜ช๐˜ฏ๐˜จ ๐˜ต๐˜ฉ๐˜ฆ ๐˜ข๐˜ฃ๐˜ช๐˜ญ๐˜ช๐˜ต๐˜บ ๐˜ต๐˜ฐ ๐˜ถ๐˜ฏ๐˜ฅ๐˜ฆ๐˜ณ๐˜ด๐˜ต๐˜ข๐˜ฏ๐˜ฅ ๐˜Š๐˜ฉ๐˜ช๐˜ฏ๐˜ฆ๐˜ด๐˜ฆ?

More recently in his book, Searle linked his original argument to consciousness, but that’s probably a higher bar than needed to reason that ChatGPT is a box that has no idea what it’s talking about.

Autonomous taxis are boring

I took several rides in Google’s Waymo robotaxi. This is a short video of the experience, which is great, almost flawless. One problem is that it gets boring really fast.

About half the time during my trip, I used Uber or Lyft instead of a Waymo, and I met a professional dancer, a retired chef, a compliance officer, a criminal justice expert, an Amazon truck driver, and a painter.

I had really fun conversations that touched on “AI” and dance music, the best old school restaurants in town, the private equity fundraising process, cybersecurity, privacy, more “AI” and so on. As a bonus, almost all of the conversations included some useful, local information about the city.

None of the robotaxi rides had any of this, serendipity was nonexistent. The robot feels friendly, sure, but that’s about it. The longer the ride, the more boring it gets.

Replacing influencers with generative models

Replacing influencers with generative AI looks like a great use case. The real question is whether influencers who promote “AI” will also be replaced by AI.

Some details:
With just a few minutes of sample video from the person to be cloned and a payment of $1,000, brands can clone a human streamer to work 24/7.

The AI videobots may already be having some economic impact: the average salary for livestream hosts in China is down 20% from 2022 (just another YoY figure, not a causal effect).

Source

AI as an umbrella term

This is based on a recent Nature study, and it’s useful with a caveat that may make the findings and visuals less striking than they look:

“๐‘๐‘Ž๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘ ๐‘’๐‘Ž๐‘Ÿ๐‘โ„Ž๐‘’๐‘‘ ๐‘“๐‘œ๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘๐‘™๐‘’๐‘ , ๐‘Ÿ๐‘’๐‘ฃ๐‘–๐‘’๐‘ค๐‘  ๐‘Ž๐‘›๐‘‘ ๐‘๐‘œ๐‘›๐‘“๐‘’๐‘Ÿ๐‘’๐‘›๐‘๐‘’ ๐‘๐‘Ž๐‘๐‘’๐‘Ÿ๐‘  ๐‘–๐‘› ๐‘†๐‘๐‘œ๐‘๐‘ข๐‘ , ๐‘ค๐‘–๐‘กโ„Ž ๐‘ก๐‘–๐‘ก๐‘™๐‘’๐‘ , ๐‘Ž๐‘๐‘ ๐‘ก๐‘Ÿ๐‘Ž๐‘๐‘ก๐‘ , ๐‘œ๐‘Ÿ ๐‘˜๐‘’๐‘ฆ๐‘ค๐‘œ๐‘Ÿ๐‘‘๐‘  ๐‘๐‘œ๐‘›๐‘ก๐‘Ž๐‘–๐‘›๐‘–๐‘›๐‘” ๐‘กโ„Ž๐‘’ ๐‘ก๐‘’๐‘Ÿ๐‘š๐‘  โ€˜๐‘š๐‘Ž๐‘โ„Ž๐‘–๐‘›๐‘’ ๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘›๐‘–๐‘›๐‘”โ€™; โ€˜๐‘›๐‘’๐‘ข๐‘Ÿ๐‘Ž๐‘™ ๐‘›๐‘’๐‘ก*โ€™, โ€˜๐‘‘๐‘’๐‘’๐‘ ๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘›๐‘–๐‘›๐‘”โ€™, โ€˜๐‘Ÿ๐‘Ž๐‘›๐‘‘๐‘œ๐‘š ๐‘“๐‘œ๐‘Ÿ๐‘’๐‘ ๐‘กโ€™, โ€˜๐‘‘๐‘’๐‘’๐‘ ๐‘™๐‘’๐‘Ž๐‘Ÿ๐‘›๐‘–๐‘›๐‘”โ€™, โ€˜๐‘ ๐‘ข๐‘๐‘๐‘œ๐‘Ÿ๐‘ก ๐‘ฃ๐‘’๐‘๐‘ก๐‘œ๐‘Ÿ ๐‘š๐‘Ž๐‘โ„Ž๐‘–๐‘›๐‘’โ€™, โ€˜๐‘Ž๐‘Ÿ๐‘ก๐‘–๐‘“๐‘–๐‘๐‘–๐‘Ž๐‘™ ๐‘–๐‘›๐‘ก๐‘’๐‘™๐‘™๐‘–๐‘”๐‘’๐‘›๐‘๐‘’โ€™, โ€˜๐‘‘๐‘–๐‘š๐‘’๐‘›๐‘ ๐‘–๐‘œ๐‘›๐‘Ž๐‘™๐‘–๐‘ก๐‘ฆ ๐‘Ÿ๐‘’๐‘‘๐‘ข๐‘๐‘ก๐‘–๐‘œ๐‘›โ€™, โ€˜๐‘”๐‘Ž๐‘ข๐‘ ๐‘ ๐‘–๐‘Ž๐‘› ๐‘๐‘Ÿ๐‘œ๐‘๐‘’๐‘ ๐‘ ๐‘’๐‘ โ€™, โ€˜๐‘›๐‘Ž๐‘–ฬˆ๐‘ฃ๐‘’ ๐‘๐‘Ž๐‘ฆ๐‘’๐‘ โ€™, โ€˜๐‘™๐‘Ž๐‘Ÿ๐‘”๐‘’ ๐‘™๐‘Ž๐‘›๐‘”๐‘ข๐‘Ž๐‘”๐‘’ ๐‘š๐‘œ๐‘‘๐‘’๐‘™๐‘ โ€™, โ€˜๐‘™๐‘™๐‘š*โ€™, โ€˜๐‘โ„Ž๐‘Ž๐‘ก๐‘”๐‘๐‘กโ€™, โ€˜๐‘”๐‘Ž๐‘ข๐‘ ๐‘ ๐‘–๐‘Ž๐‘› ๐‘š๐‘–๐‘ฅ๐‘ก๐‘ข๐‘Ÿ๐‘’ ๐‘š๐‘œ๐‘‘๐‘’๐‘™๐‘ โ€™, โ€˜๐‘’๐‘›๐‘ ๐‘’๐‘š๐‘๐‘™๐‘’ ๐‘š๐‘’๐‘กโ„Ž๐‘œ๐‘‘๐‘ โ€™.”

So, SVM, Naive Bayes, Random forest, and Ensemble methods are all called AI (not untrue, but…). Gaussian processes? Well, papers with a GP regression count then. Dimensionality reduction? So, papers using PCA or LDA count.

This feeds the trend of using AI as an umbrella term unfortunately.

Source

Using predictive modeling as a hammer when the nail needs more thinking

The business problem is to put a lifeguard station on a beach to save some lives (i.e., find the best location for the lifeguard station). This is not really a predictive modeling problem. But that’s the hammer our data scientists have and they have access to fancy libraries. There is also some historical data: swimmers rescued and drowned at other beaches. It all checks out. Resistance to ๐˜ฑ๐˜ช๐˜ฑ ๐˜ช๐˜ฏ๐˜ด๐˜ต๐˜ข๐˜ญ๐˜ญ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฑ๐˜ฉ๐˜ฆ๐˜ต is futile.

Transforming the problem into an objective function could have signaled that this is an optimization problem (a prescriptive modeling problem), but that step was skipped. In the picture shown, we may need a solution:

– minimizes distance => ๐—ฆ๐—ผ๐—น๐˜ƒ๐—ฒ๐—ฑ ๐˜‚๐˜€๐—ถ๐—ป๐—ด ๐—ฝ๐—ถ๐—ฝ ๐—ถ๐—ป๐˜€๐˜๐—ฎ๐—น๐—น ๐—ณ๐—ฎ๐—ป๐—ฐ๐˜†_๐—น๐—ถ๐—ฏ๐—ฟ๐—ฎ๐—ฟ๐˜†
while also…
– minimizing time => ๐—ง๐—ต๐—ฒ ๐—ฑ๐—ผ๐—บ๐—ฎ๐—ถ๐—ป ๐—ฒ๐˜…๐—ฝ๐—ฒ๐—ฟ๐˜ ๐—ฒ๐—ป๐˜๐—ฒ๐—ฟ๐˜€ ๐˜๐—ต๐—ฒ ๐—ฟ๐—ผ๐—ผ๐—บ
– minimizing swimming => ๐—ง๐—ต๐—ฒ ๐—น๐—ฎ๐—ฏ๐—ผ๐—ฟ ๐˜‚๐—ป๐—ถ๐—ผ๐—ป ๐—ถ๐—ป๐˜๐—ฒ๐—ฟ๐˜ƒ๐—ฒ๐—ป๐—ฒ๐˜€
– minimizing time to ice cream => ๐—ง๐—ต๐—ฒ ๐—ฒ๐˜…๐—ฒ๐—ฐ๐˜‚๐˜๐—ถ๐˜ƒ๐—ฒ ๐—น๐—ฒ๐—ฎ๐—ฑ๐—ฒ๐—ฟ๐˜€๐—ต๐—ถ๐—ฝ ๐˜€๐˜๐—ฒ๐—ฝ๐˜€ ๐—ถ๐—ป
– [not shown] minimizing walking on sand => ๐—ง๐—ต๐—ฒ ๐——๐—ฒ๐—ฝ๐—ฎ๐—ฟ๐˜๐—บ๐—ฒ๐—ป๐˜ ๐—ผ๐—ณ ๐—Ÿ๐—ฎ๐—ฏ๐—ผ๐—ฟ ๐—ฟ๐—ฒ๐—พ๐˜‚๐—ถ๐—ฟ๐—ฒ๐—บ๐—ฒ๐—ป๐˜
and hopefully not…
– maximizing time => ๐—” ๐—ท๐˜‚๐—ป๐—ถ๐—ผ๐—ฟ ๐—ฑ๐—ฎ๐˜๐—ฎ ๐˜€๐—ฐ๐—ถ๐—ฒ๐—ป๐˜๐—ถ๐˜€๐˜ ๐˜€๐—ผ๐—น๐˜ƒ๐—ฒ๐˜€ ๐˜๐—ต๐—ฒ ๐—ฝ๐—ฟ๐—ผ๐—ฏ๐—น๐—ฒ๐—บ

So, the ideal solution requires more thinking about the problem. For example, maximizing the number of lives saved may actually require constraints on how to minimize time so that lifeguards don’t risk their lives during the rescue.

The law of the instrument works a little too well in predictive modeling (and more generally in machine learning). Objective functions are often lost in translation when they should be an explicit step in the modeling process. Best practice tends to favor performance metrics, even though achieving the highest performance on the wrong function is clearly useless (and sometimes detrimental).

More focus on objective functions and less obsession with “better performance” may be what we need. This would underline the importance of problem formulation and domain knowledge, and undermine the ๐˜ฑ๐˜ช๐˜ฑ ๐˜ช๐˜ฏ๐˜ด๐˜ต๐˜ข๐˜ญ๐˜ญ ๐˜ฑ๐˜ณ๐˜ฐ๐˜ฑ๐˜ฉ๐˜ฆ๐˜ต solution.

A combination of Warren Powell‘s writing and the accompanying xkcd comic inspired this post (courtesy of xkcd.com).