The founding event of artificial intelligence as a field is considered to be the 1956 Dartmouth Workshop in Hanover, New Hampshire.
The proposal listed seven areas of focus for AI: automation of higher-level functions, language models, neural networks, computational efficiency, self-learning, abstraction and generalization from sensor data, and creativity.
These were all revolutionary ideas at the time (and still are), but the one that stands out to me the most is creativity:
“๐ ๐ง๐ข๐ช๐ณ๐ญ๐บ ๐ข๐ต๐ต๐ณ๐ข๐ค๐ต๐ช๐ท๐ฆ ๐ข๐ฏ๐ฅ ๐บ๐ฆ๐ต ๐ค๐ญ๐ฆ๐ข๐ณ๐ญ๐บ ๐ช๐ฏ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐ต๐ฆ ๐ค๐ฐ๐ฏ๐ซ๐ฆ๐ค๐ต๐ถ๐ณ๐ฆ ๐ช๐ด ๐ต๐ฉ๐ข๐ต ๐ต๐ฉ๐ฆ ๐ฅ๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ท๐ฆ ๐ต๐ฉ๐ช๐ฏ๐ฌ๐ช๐ฏ๐จ ๐ข๐ฏ๐ฅ ๐ถ๐ฏ๐ช๐ฎ๐ข๐จ๐ช๐ฏ๐ข๐ต๐ช๐ท๐ฆ ๐ค๐ฐ๐ฎ๐ฑ๐ฆ๐ต๐ฆ๐ฏ๐ต ๐ต๐ฉ๐ช๐ฏ๐ฌ๐ช๐ฏ๐จ ๐ญ๐ช๐ฆ๐ด ๐ช๐ฏ ๐ต๐ฉ๐ฆ ๐ช๐ฏ๐ซ๐ฆ๐ค๐ต๐ช๐ฐ๐ฏ ๐ฐ๐ง ๐ข ๐ด๐ฐ๐ฎ๐ฆ ๐ณ๐ข๐ฏ๐ฅ๐ฐ๐ฎ๐ฏ๐ฆ๐ด๐ด.”
Today, most generative AI models seem to follow this idea of injecting some randomness. But can a touch of randomness turn ๐ถ๐ฏ๐ช๐ฎ๐ข๐จ๐ช๐ฏ๐ข๐ต๐ช๐ท๐ฆ ๐ค๐ฐ๐ฎ๐ฑ๐ฆ๐ต๐ฆ๐ฏ๐ต ๐ต๐ฉ๐ช๐ฏ๐ฌ๐ช๐ฏ๐จ into ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ท๐ช๐ต๐บ? Well, this ๐ค๐ญ๐ฆ๐ข๐ณ๐ญ๐บ ๐ช๐ด ๐ข๐ฏ ๐ช๐ฏ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐ต๐ฆ ๐ค๐ฐ๐ฏ๐ซ๐ฆ๐ค๐ต๐ถ๐ณ๐ฆ.
Randomness alone can’t make a model imaginative. Imagination requires an understanding of cause-effect relationships and counterfactual reasoning.
๐๐ฏ ๐๐ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ค๐ข๐ฏ ๐ฑ๐ฆ๐ณ๐ง๐ฆ๐ค๐ต๐ญ๐บ ๐ณ๐ฆ๐ฑ๐ณ๐ฐ๐ฅ๐ถ๐ค๐ฆ ๐ต๐ฉ๐ฆ ๐ค๐ฐ๐ญ๐ฐ๐ณ๐ด ๐ฐ๐ง ๐ข ๐ด๐ถ๐ฏ๐ด๐ฆ๐ต ๐ช๐ฏ ๐ฑ๐ช๐น๐ฆ๐ญ๐ด, ๐บ๐ฆ๐ต ๐ช๐ต ๐ธ๐ฐ๐ถ๐ญ๐ฅ ๐ง๐ข๐ช๐ญ ๐ต๐ฐ ๐จ๐ณ๐ข๐ด๐ฑ ๐ต๐ฉ๐ฆ ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ท๐ฆ ๐ด๐ฑ๐ข๐ณ๐ฌ ๐ต๐ฉ๐ข๐ต ๐ต๐ถ๐ณ๐ฏ๐ด ๐ข ๐ฎ๐ฆ๐ณ๐ฆ ๐ฑ๐ช๐ค๐ต๐ถ๐ณ๐ฆ ๐ช๐ฏ๐ต๐ฐ ๐ข ๐ธ๐ฐ๐ณ๐ฌ ๐ฐ๐ง ๐ข๐ณ๐ต.
That’s why the more exciting potential today seems to lie in creative human input to a model, or in using the output of the model as input to creative human brain.
Source