Loyal aide? Maybe not
Bing Copilot may have a point here, but the language could have been less patronizing. All kidding aside, another LLM will surely take the job.
Log of insights and news – Gorkem Turgut (G.T.) Ozer
Bing Copilot may have a point here, but the language could have been less patronizing. All kidding aside, another LLM will surely take the job.
Google seems to have just revealed its latest text-to-video diffusion model, Google Lumiere, just as the debate over fake images and videos heats up, with the following note:
๐๐ฐ๐ค๐ช๐ฆ๐ต๐ข๐ญ ๐๐ฎ๐ฑ๐ข๐ค๐ต
๐๐ถ๐ณ ๐ฑ๐ณ๐ช๐ฎ๐ข๐ณ๐บ ๐จ๐ฐ๐ข๐ญ ๐ช๐ฏ ๐ต๐ฉ๐ช๐ด ๐ธ๐ฐ๐ณ๐ฌ ๐ช๐ด ๐ต๐ฐ ๐ฆ๐ฏ๐ข๐ฃ๐ญ๐ฆ ๐ฏ๐ฐ๐ท๐ช๐ค๐ฆ ๐ถ๐ด๐ฆ๐ณ๐ด ๐ต๐ฐ ๐จ๐ฆ๐ฏ๐ฆ๐ณ๐ข๐ต๐ฆ ๐ท๐ช๐ด๐ถ๐ข๐ญ ๐ค๐ฐ๐ฏ๐ต๐ฆ๐ฏ๐ต ๐ช๐ฏ ๐ข๐ฏ ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ท๐ฆ ๐ข๐ฏ๐ฅ ๐ง๐ญ๐ฆ๐น๐ช๐ฃ๐ญ๐ฆ ๐ธ๐ข๐บ. ๐๐ฐ๐ธ๐ฆ๐ท๐ฆ๐ณ, ๐ต๐ฉ๐ฆ๐ณ๐ฆ ๐ช๐ด ๐ข ๐ณ๐ช๐ด๐ฌ ๐ฐ๐ง ๐ฎ๐ช๐ด๐ถ๐ด๐ฆ ๐ง๐ฐ๐ณ ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ฏ๐จ ๐ง๐ข๐ฌ๐ฆ ๐ฐ๐ณ ๐ฉ๐ข๐ณ๐ฎ๐ง๐ถ๐ญ ๐ค๐ฐ๐ฏ๐ต๐ฆ๐ฏ๐ต ๐ธ๐ช๐ต๐ฉ ๐ฐ๐ถ๐ณ ๐ต๐ฆ๐ค๐ฉ๐ฏ๐ฐ๐ญ๐ฐ๐จ๐บ, ๐ข๐ฏ๐ฅ ๐ธ๐ฆ ๐ฃ๐ฆ๐ญ๐ช๐ฆ๐ท๐ฆ ๐ต๐ฉ๐ข๐ต ๐ช๐ต ๐ช๐ด ๐ค๐ณ๐ถ๐ค๐ช๐ข๐ญ ๐ต๐ฐ ๐ฅ๐ฆ๐ท๐ฆ๐ญ๐ฐ๐ฑ ๐ข๐ฏ๐ฅ ๐ข๐ฑ๐ฑ๐ญ๐บ ๐ต๐ฐ๐ฐ๐ญ๐ด ๐ง๐ฐ๐ณ ๐ฅ๐ฆ๐ต๐ฆ๐ค๐ต๐ช๐ฏ๐จ ๐ฃ๐ช๐ข๐ด๐ฆ๐ด ๐ข๐ฏ๐ฅ ๐ฎ๐ข๐ญ๐ช๐ค๐ช๐ฐ๐ถ๐ด ๐ถ๐ด๐ฆ ๐ค๐ข๐ด๐ฆ๐ด ๐ช๐ฏ ๐ฐ๐ณ๐ฅ๐ฆ๐ณ ๐ต๐ฐ ๐ฆ๐ฏ๐ด๐ถ๐ณ๐ฆ ๐ข ๐ด๐ข๐ง๐ฆ ๐ข๐ฏ๐ฅ ๐ง๐ข๐ช๐ณ ๐ถ๐ด๐ฆ.
This is the only paragraph in the paper on safe and fair use. The model output certainly looks impressive, but, without a concrete discussion of ideas and guardrails for safe and fair use, this reads like nothing more than a checkbox to avoid bad publicity from the likely consequences.
In a sample of 6.4 billion sentences in 90 languages from the Web, this study finds that 57.1% is low-quality machine translation. In addition, it is the low quality content produced in English (to generate ad revenue) that is translated en masse into other languages (again, to generate ad revenue).
The study discusses the negative implications for the training of large language models (garbage in, garbage out), but the increasingly poor quality of public web content is concerning nevertheless.
In this Q&A about Walmart’s custom-trained, proprietary “My Assistant” language model, I saw an excerpt from another article in which Walmart’s Head of People Product uses Excel as an analogy for generative models.
โ๐๐ค๐ค๐ฐ๐ณ๐ฅ๐ช๐ฏ๐จ ๐ต๐ฐ ๐๐ฆ๐ต๐ฆ๐ณ๐ด๐ฐ๐ฏ, ๐ข๐ฏ๐บ ๐จ๐ฆ๐ฏ๐ฆ๐ณ๐ข๐ต๐ช๐ท๐ฆ ๐๐ ๐ณ๐ฐ๐ญ๐ญ๐ฐ๐ถ๐ต ๐ช๐ด ๐จ๐ฐ๐ช๐ฏ๐จ ๐ต๐ฐ ๐ฆ๐ฏ๐ค๐ฐ๐ถ๐ฏ๐ต๐ฆ๐ณ ๐ข ๐ค๐ฉ๐ข๐ฏ๐จ๐ฆ ๐ค๐ถ๐ณ๐ท๐ฆ ๐ฏ๐ฐ๐ต ๐ถ๐ฏ๐ญ๐ช๐ฌ๐ฆ ๐ธ๐ฉ๐ข๐ต ๐๐ช๐ค๐ณ๐ฐ๐ด๐ฐ๐ง๐ต ๐๐น๐ค๐ฆ๐ญ ๐ฆ๐น๐ฑ๐ฆ๐ณ๐ช๐ฆ๐ฏ๐ค๐ฆ๐ฅ ๐ช๐ฏ ๐ต๐ฉ๐ฆ 1980๐ด ๐ฃ๐ฆ๐ง๐ฐ๐ณ๐ฆ ๐ฃ๐ฆ๐ช๐ฏ๐จ ๐ข๐ค๐ค๐ฆ๐ฑ๐ต๐ฆ๐ฅ ๐ข๐ด ๐ค๐ฐ๐ณ๐ฑ๐ฐ๐ณ๐ข๐ต๐ฆ ๐จ๐ฐ๐ด๐ฑ๐ฆ๐ญ. ๐๐ช๐ฎ๐ช๐ญ๐ข๐ณ ๐ต๐ฐ ๐ฉ๐ฐ๐ธ ๐ฆ๐ข๐ณ๐ญ๐บ ๐ถ๐ด๐ฆ๐ณ๐ด ๐ฐ๐ง ๐๐ช๐ค๐ณ๐ฐ๐ด๐ฐ๐ง๐ต ๐๐น๐ค๐ฆ๐ญ ๐ฉ๐ข๐ฅ ๐ต๐ฐ ๐ฃ๐ฆ ๐ต๐ณ๐ข๐ช๐ฏ๐ฆ๐ฅ ๐ต๐ฐ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ ๐ฉ๐ฐ๐ธ ๐ต๐ฐ ๐ฉ๐ข๐ณ๐ฏ๐ฆ๐ด๐ด ๐ต๐ฉ๐ฆ ๐ฑ๐ฐ๐ธ๐ฆ๐ณ ๐ฐ๐ง ๐ข ๐๐ช๐ท๐ฐ๐ต๐๐ข๐ฃ๐ญ๐ฆ ๐ข๐ฏ๐ฅ ๐๐๐๐๐๐๐ ๐ง๐ฐ๐ณ๐ฎ๐ถ๐ญ๐ข๐ด, ๐จ๐ฆ๐ฏ๐ฆ๐ณ๐ข๐ต๐ช๐ท๐ฆ ๐๐ ๐ถ๐ด๐ฆ๐ณ๐ด ๐ฉ๐ข๐ท๐ฆ ๐ต๐ฐ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ ๐ฑ๐ณ๐ฐ๐ฎ๐ฑ๐ต๐ช๐ฏ๐จ ๐ข๐ฏ๐ฅ ๐ฉ๐ช๐จ๐ฉ-๐ช๐ฎ๐ฑ๐ข๐ค๐ต ๐ถ๐ด๐ฆ ๐ค๐ข๐ด๐ฆ๐ด ๐ต๐ฐ ๐ต๐ณ๐ถ๐ญ๐บ ๐ฉ๐ข๐ณ๐ฏ๐ฆ๐ด๐ด ๐ช๐ต๐ด ๐ฑ๐ฐ๐ธ๐ฆ๐ณ.โ
2024 will be the year that more companies adopt generative models as an aid to their employees. But it is interesting to use an analogy to deterministic functions like PivotTable and VLOOKUP to drive the adoption of a black box model with probabilistic outputs. Let’s see how that plays out for Walmart.
The use of AI algorithms for drug discovery is one of the most promising areas for its societal value. Historically, most deep learning approaches in this area have used black box models, providing little insight into discoveries.
A recent study published in Nature uses explainable graph neural networks to address the urgent need for new antibiotics due to the ongoing antibiotic resistance crisis.
The study begins with the testing and labeling of 39,312 compounds,
– which become training data for four ensembles of graph neural networks,
– which make predictions for a total of 12,076,365 compounds in the test set (hits vs. non-hits based on antibiotic activity and cytotoxicity),
– of which 3,646 compounds are selected based on the probability that they will act as antibiotics without being toxic to humans,
– which are then reduced to 283 compounds by a series of empirical steps,
– and to 4 compounds by experimental testing,
– and of the 4, two “drug-like” compounds are tested in mice,
and one of the two is found to be effective against MRSA infections in this controlled experiment, thus closing the causal loop.
This is a great application of combining explainable predictive models with causal identification, and demonstrates that machine learning models used in high-stakes areas can be explainable without compromising performance.
The dose-response work of Callaway, Goodman-Bacon, and Pedro Sant’Anna seems to be coming along nicely. If you haven’t had enough of the parallel trends assumption, get ready for the “strong” parallel trends assumption!
“๐๐ฏ ๐ต๐ฉ๐ช๐ด ๐ฑ๐ข๐ฑ๐ฆ๐ณ, ๐ธ๐ฆ ๐ฅ๐ช๐ด๐ค๐ถ๐ด๐ด ๐ข๐ฏ ๐ข๐ญ๐ต๐ฆ๐ณ๐ฏ๐ข๐ต๐ช๐ท๐ฆ ๐ฃ๐ถ๐ต ๐ต๐บ๐ฑ๐ช๐ค๐ข๐ญ๐ญ๐บ ๐ด๐ต๐ณ๐ฐ๐ฏ๐จ๐ฆ๐ณ ๐ข๐ด๐ด๐ถ๐ฎ๐ฑ๐ต๐ช๐ฐ๐ฏ, ๐ธ๐ฉ๐ช๐ค๐ฉ ๐ธ๐ฆ ๐ค๐ข๐ญ๐ญ ๐ด๐ต๐ณ๐ฐ๐ฏ๐จ ๐ฑ๐ข๐ณ๐ข๐ญ๐ญ๐ฆ๐ญ ๐ต๐ณ๐ฆ๐ฏ๐ฅ๐ด. ๐๐ต๐ณ๐ฐ๐ฏ๐จ ๐ฑ๐ข๐ณ๐ข๐ญ๐ญ๐ฆ๐ญ ๐ต๐ณ๐ฆ๐ฏ๐ฅ๐ด ๐ฐ๐ง๐ต๐ฆ๐ฏ ๐ณ๐ฆ๐ด๐ต๐ณ๐ช๐ค๐ต๐ด ๐ต๐ณ๐ฆ๐ข๐ต๐ฎ๐ฆ๐ฏ๐ต ๐ฆ๐ง๐ง๐ฆ๐ค๐ต ๐ฉ๐ฆ๐ต๐ฆ๐ณ๐ฐ๐จ๐ฆ๐ฏ๐ฆ๐ช๐ต๐บ ๐ข๐ฏ๐ฅ ๐ซ๐ถ๐ด๐ต๐ช๐ง๐ช๐ฆ๐ด ๐ค๐ฐ๐ฎ๐ฑ๐ข๐ณ๐ช๐ฏ๐จ ๐ฅ๐ฐ๐ด๐ฆ ๐จ๐ณ๐ฐ๐ถ๐ฑ๐ด. ๐๐ฏ๐ต๐ถ๐ช๐ต๐ช๐ท๐ฆ๐ญ๐บ, ๐ต๐ฐ ๐ฃ๐ฆ ๐ข ๐จ๐ฐ๐ฐ๐ฅ ๐ค๐ฐ๐ถ๐ฏ๐ต๐ฆ๐ณ๐ง๐ข๐ค๐ต๐ถ๐ข๐ญ, ๐ญ๐ฐ๐ธ๐ฆ๐ณ-๐ฅ๐ฐ๐ด๐ฆ ๐ถ๐ฏ๐ช๐ต๐ด ๐ฎ๐ถ๐ด๐ต ๐ณ๐ฆ๐ง๐ญ๐ฆ๐ค๐ต ๐ฉ๐ฐ๐ธ ๐ฉ๐ช๐จ๐ฉ๐ฆ๐ณ-๐ฅ๐ฐ๐ด๐ฆ ๐ถ๐ฏ๐ช๐ต๐ดโ ๐ฐ๐ถ๐ต๐ค๐ฐ๐ฎ๐ฆ๐ด ๐ธ๐ฐ๐ถ๐ญ๐ฅ ๐ฉ๐ข๐ท๐ฆ ๐ค๐ฉ๐ข๐ฏ๐จ๐ฆ๐ฅ ๐ธ๐ช๐ต๐ฉ๐ฐ๐ถ๐ต ๐ต๐ณ๐ฆ๐ข๐ต๐ฎ๐ฆ๐ฏ๐ต ๐ข๐ฏ๐ฅ ๐ข๐ต ๐ต๐ฉ๐ฆ ๐ญ๐ฐ๐ธ๐ฆ๐ณ ๐ญ๐ฆ๐ท๐ฆ๐ญ ๐ฐ๐ง ๐ต๐ฉ๐ฆ ๐ต๐ณ๐ฆ๐ข๐ต๐ฎ๐ฆ๐ฏ๐ต. ๐๐ฆ ๐ด๐ฉ๐ฐ๐ธ ๐ต๐ฉ๐ข๐ต ๐ธ๐ฉ๐ฆ๐ฏ ๐ฐ๐ฏ๐ฆ ๐ฐ๐ฏ๐ญ๐บ ๐ช๐ฎ๐ฑ๐ฐ๐ด๐ฆ๐ด ๐ต๐ฉ๐ฆ โ๐ด๐ต๐ข๐ฏ๐ฅ๐ข๐ณ๐ฅโ ๐ฑ๐ข๐ณ๐ข๐ญ๐ญ๐ฆ๐ญ ๐ต๐ณ๐ฆ๐ฏ๐ฅ๐ด ๐ข๐ด๐ด๐ถ๐ฎ๐ฑ๐ต๐ช๐ฐ๐ฏ, ๐ค๐ฐ๐ฎ๐ฑ๐ข๐ณ๐ช๐ด๐ฐ๐ฏ๐ด ๐ข๐ค๐ณ๐ฐ๐ด๐ด ๐ต๐ณ๐ฆ๐ข๐ต๐ฎ๐ฆ๐ฏ๐ต ๐ฅ๐ฐ๐ด๐ข๐จ๐ฆ๐ด ๐ข๐ณ๐ฆ โ๐ค๐ฐ๐ฏ๐ต๐ข๐ฎ๐ช๐ฏ๐ข๐ต๐ฆ๐ฅโ ๐ธ๐ช๐ต๐ฉ ๐ด๐ฆ๐ญ๐ฆ๐ค๐ต๐ช๐ฐ๐ฏ ๐ฃ๐ช๐ข๐ด ๐ณ๐ฆ๐ญ๐ข๐ต๐ฆ๐ฅ ๐ต๐ฐ ๐ต๐ณ๐ฆ๐ข๐ต๐ฎ๐ฆ๐ฏ๐ต ๐ฆ๐ง๐ง๐ฆ๐ค๐ต ๐ฉ๐ฆ๐ต๐ฆ๐ณ๐ฐ๐จ๐ฆ๐ฏ๐ฆ๐ช๐ต๐บ. ๐๐ฉ๐ถ๐ด, ๐ธ๐ช๐ต๐ฉ๐ฐ๐ถ๐ต ๐ข๐ฅ๐ฅ๐ช๐ต๐ช๐ฐ๐ฏ๐ข๐ญ ๐ด๐ต๐ณ๐ถ๐ค๐ต๐ถ๐ณ๐ฆ, ๐ค๐ฐ๐ฎ๐ฑ๐ข๐ณ๐ช๐ด๐ฐ๐ฏ ๐ข๐ค๐ณ๐ฐ๐ด๐ด ๐ฅ๐ฐ๐ด๐ข๐จ๐ฆ๐ด ๐ฎ๐ข๐บ ๐ฏ๐ฐ๐ต ๐ช๐ฅ๐ฆ๐ฏ๐ต๐ช๐ง๐บ ๐ค๐ข๐ถ๐ด๐ข๐ญ ๐ฆ๐ง๐ง๐ฆ๐ค๐ต๐ด. ๐๐ฉ๐ฆ ๐ฑ๐ญ๐ข๐ถ๐ด๐ช๐ฃ๐ช๐ญ๐ช๐ต๐บ ๐ฐ๐ง ๐ด๐ต๐ณ๐ฐ๐ฏ๐จ ๐ฑ๐ข๐ณ๐ข๐ญ๐ญ๐ฆ๐ญ ๐ต๐ณ๐ฆ๐ฏ๐ฅ๐ด ๐ฅ๐ฆ๐ฑ๐ฆ๐ฏ๐ฅ๐ด ๐ฐ๐ฏ ๐ต๐ฉ๐ฆ ๐ฆ๐ฎ๐ฑ๐ช๐ณ๐ช๐ค๐ข๐ญ ๐ค๐ฐ๐ฏ๐ต๐ฆ๐น๐ต ๐ฐ๐ง ๐ต๐ฉ๐ฆ ๐ข๐ฏ๐ข๐ญ๐บ๐ด๐ช๐ด, ๐ข๐ฏ๐ฅ ๐ธ๐ฆ ๐ฅ๐ช๐ด๐ค๐ถ๐ด๐ด ๐ด๐ฐ๐ฎ๐ฆ ๐ง๐ข๐ญ๐ด๐ช๐ง๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ ๐ด๐ต๐ณ๐ข๐ต๐ฆ๐จ๐ช๐ฆ๐ด ๐ต๐ฉ๐ข๐ต ๐ค๐ข๐ฏ ๐ฃ๐ฆ ๐ถ๐ด๐ฆ๐ฅ ๐ต๐ฐ ๐ข๐ด๐ด๐ฆ๐ด๐ด ๐ช๐ต.”
2024 will be the year of lawsuits against generative AI companies. We’ve already had the GitHub Copilot case over assisted coding (https://lnkd.in/eH8Ap-eJ) and the Anthropic case over AI lyrics (https://lnkd.in/eY6UF9Cn). Now the Times joins the fray (https://lnkd.in/e8wHHMzx), and more are likely to follow.
So far, Gen AI companies have defended themselves by arguing fair use and transformative use – that their models create something substantially new and serve a different purpose than the original (thus doesn’t substitute the original, as in Google Books). But recent Supreme Court decisions such as Warhol v. Goldsmith made clear that transformative use claims face high bars.
What might come next?
– New business models for content licensing
– Restrictions on public access to some internal models
– Calls for updated copyright laws and content use regulations
– Technical solutions like attribution, data provenance, and content tagging
– What else?
In our latest short post at Data Duets, Duygu Dagli and I share a recent paper (and an R package) that offers a better solution.
How often do you log transform your data? How do you deal with zeros? Do you just add 1 or some other constant before taking the log?
In our latest short post, Gorkem Turgut (G.T.) Ozer and I share a recent paper (and an R package) that offers a better solution!
The founding event of artificial intelligence as a field is considered to be the 1956 Dartmouth Workshop in Hanover, New Hampshire.
The proposal listed seven areas of focus for AI: automation of higher-level functions, language models, neural networks, computational efficiency, self-learning, abstraction and generalization from sensor data, and creativity.
These were all revolutionary ideas at the time (and still are), but the one that stands out to me the most is creativity:
“๐ ๐ง๐ข๐ช๐ณ๐ญ๐บ ๐ข๐ต๐ต๐ณ๐ข๐ค๐ต๐ช๐ท๐ฆ ๐ข๐ฏ๐ฅ ๐บ๐ฆ๐ต ๐ค๐ญ๐ฆ๐ข๐ณ๐ญ๐บ ๐ช๐ฏ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐ต๐ฆ ๐ค๐ฐ๐ฏ๐ซ๐ฆ๐ค๐ต๐ถ๐ณ๐ฆ ๐ช๐ด ๐ต๐ฉ๐ข๐ต ๐ต๐ฉ๐ฆ ๐ฅ๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฃ๐ฆ๐ต๐ธ๐ฆ๐ฆ๐ฏ ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ท๐ฆ ๐ต๐ฉ๐ช๐ฏ๐ฌ๐ช๐ฏ๐จ ๐ข๐ฏ๐ฅ ๐ถ๐ฏ๐ช๐ฎ๐ข๐จ๐ช๐ฏ๐ข๐ต๐ช๐ท๐ฆ ๐ค๐ฐ๐ฎ๐ฑ๐ฆ๐ต๐ฆ๐ฏ๐ต ๐ต๐ฉ๐ช๐ฏ๐ฌ๐ช๐ฏ๐จ ๐ญ๐ช๐ฆ๐ด ๐ช๐ฏ ๐ต๐ฉ๐ฆ ๐ช๐ฏ๐ซ๐ฆ๐ค๐ต๐ช๐ฐ๐ฏ ๐ฐ๐ง ๐ข ๐ด๐ฐ๐ฎ๐ฆ ๐ณ๐ข๐ฏ๐ฅ๐ฐ๐ฎ๐ฏ๐ฆ๐ด๐ด.”
Today, most generative AI models seem to follow this idea of injecting some randomness. But can a touch of randomness turn ๐ถ๐ฏ๐ช๐ฎ๐ข๐จ๐ช๐ฏ๐ข๐ต๐ช๐ท๐ฆ ๐ค๐ฐ๐ฎ๐ฑ๐ฆ๐ต๐ฆ๐ฏ๐ต ๐ต๐ฉ๐ช๐ฏ๐ฌ๐ช๐ฏ๐จ into ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ท๐ช๐ต๐บ? Well, this ๐ค๐ญ๐ฆ๐ข๐ณ๐ญ๐บ ๐ช๐ด ๐ข๐ฏ ๐ช๐ฏ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐ต๐ฆ ๐ค๐ฐ๐ฏ๐ซ๐ฆ๐ค๐ต๐ถ๐ณ๐ฆ.
Randomness alone can’t make a model imaginative. Imagination requires an understanding of cause-effect relationships and counterfactual reasoning.
๐๐ฏ ๐๐ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ค๐ข๐ฏ ๐ฑ๐ฆ๐ณ๐ง๐ฆ๐ค๐ต๐ญ๐บ ๐ณ๐ฆ๐ฑ๐ณ๐ฐ๐ฅ๐ถ๐ค๐ฆ ๐ต๐ฉ๐ฆ ๐ค๐ฐ๐ญ๐ฐ๐ณ๐ด ๐ฐ๐ง ๐ข ๐ด๐ถ๐ฏ๐ด๐ฆ๐ต ๐ช๐ฏ ๐ฑ๐ช๐น๐ฆ๐ญ๐ด, ๐บ๐ฆ๐ต ๐ช๐ต ๐ธ๐ฐ๐ถ๐ญ๐ฅ ๐ง๐ข๐ช๐ญ ๐ต๐ฐ ๐จ๐ณ๐ข๐ด๐ฑ ๐ต๐ฉ๐ฆ ๐ค๐ณ๐ฆ๐ข๐ต๐ช๐ท๐ฆ ๐ด๐ฑ๐ข๐ณ๐ฌ ๐ต๐ฉ๐ข๐ต ๐ต๐ถ๐ณ๐ฏ๐ด ๐ข ๐ฎ๐ฆ๐ณ๐ฆ ๐ฑ๐ช๐ค๐ต๐ถ๐ณ๐ฆ ๐ช๐ฏ๐ต๐ฐ ๐ข ๐ธ๐ฐ๐ณ๐ฌ ๐ฐ๐ง ๐ข๐ณ๐ต.
That’s why the more exciting potential today seems to lie in creative human input to a model, or in using the output of the model as input to creative human brain.
Daniel Millimet and Marc F. Bellemare work on an interesting paper on the feasibility of assuming that fixed effects are fixed over long periods in causal inference models. They highlight an overlooked reality that fixed effects may fail to control for unobserved heterogeneity over long periods of time.
One lesson for causal identification using long panels is to think twice before assuming that fixed effects will take care of unobserved heterogeneity.
More on this is in our short post with Duygu Dagli at Data Duets. She uses rapid gentrification as an example. The short format is a new idea to post more often.
This is the tag line on boomy.com, a generative AI-based music platform.
We have entered an era where everyone seems to be able to ๐ค๐ณ๐ฆ๐ข๐ต๐ฆ ๐ฐ๐ณ๐ช๐จ๐ช๐ฏ๐ข๐ญ ๐๐๐ ๐ช๐ฏ ๐ด๐ฆ๐ค๐ฐ๐ฏ๐ฅ๐ด, ๐ฆ๐ท๐ฆ๐ฏ ๐ช๐ง ๐ต๐ฉ๐ฆ๐บ’๐ท๐ฆ ๐ฏ๐ฆ๐ท๐ฆ๐ณ ๐ค๐ณ๐ฆ๐ข๐ต๐ฆ๐ฅ ๐๐๐ ๐ฃ๐ฆ๐ง๐ฐ๐ณ๐ฆ, a fact that leads to the need for a new vocabulary, since “original” is defined as
– created directly and personally by a particular artist
– not dependent on other people’s ideas
Meanwhile, “Boomy artists have createdย 18,047,099ย original songs” and that ๐ด๐ฐ๐ถ๐ฏ๐ฅ๐ด great.
Imagination (of counterfactuals) draws on domain knowledge and creativity and is key to causal reasoning; it is also where humans continue to outperform algorithms. What about the role of data?
๐๐ฏ๐ฆ ๐ต๐ณ๐ช๐ค๐ฌ ๐ช๐ด ๐ต๐ฐ ๐ถ๐ด๐ฆ ๐ฅ๐ข๐ต๐ข ๐ข๐ด ๐ข ๐ฉ๐ฆ๐ญ๐ฑ๐ง๐ถ๐ญ ๐จ๐ถ๐ช๐ฅ๐ฆ, ๐ฏ๐ฐ๐ต ๐ต๐ฉ๐ฆ ๐ฐ๐ฏ๐ญ๐บ ๐จ๐ถ๐ช๐ฅ๐ฆ. ๐๐ต’๐ด ๐ญ๐ช๐ฌ๐ฆ ๐ถ๐ด๐ช๐ฏ๐จ ๐ข ๐ฎ๐ข๐ฑ. ๐ ๐ฎ๐ข๐ฑ ๐ค๐ข๐ฏ ๐ต๐ฆ๐ญ๐ญ ๐บ๐ฐ๐ถ ๐ธ๐ฉ๐ฆ๐ณ๐ฆ ๐ต๐ฉ๐ฆ ๐ด๐ต๐ณ๐ฆ๐ฆ๐ต๐ด ๐ข๐ณ๐ฆ, ๐ฃ๐ถ๐ต ๐ช๐ต ๐ค๐ข๐ฏ’๐ต ๐ต๐ฆ๐ญ๐ญ ๐บ๐ฐ๐ถ ๐ช๐ง ๐ต๐ฉ๐ฆ๐ณ๐ฆ’๐ด ๐ข ๐ฑ๐ข๐ณ๐ข๐ฅ๐ฆ. ๐๐ต ๐ค๐ข๐ฏ’๐ต ๐ต๐ฆ๐ญ๐ญ ๐บ๐ฐ๐ถ ๐ธ๐ฉ๐ข๐ต ๐ฆ๐ญ๐ด๐ฆ ๐ฎ๐ช๐จ๐ฉ๐ต ๐ฉ๐ข๐ท๐ฆ ๐ฃ๐ฆ๐ฆ๐ฏ ๐ฉ๐ข๐ฑ๐ฑ๐ฆ๐ฏ๐ช๐ฏ๐จ ๐ฆ๐ช๐ต๐ฉ๐ฆ๐ณ. ๐ ๐ฐ๐ถ ๐ฉ๐ข๐ท๐ฆ ๐ต๐ฐ ๐ญ๐ฐ๐ฐ๐ฌ ๐ถ๐ฑ ๐ง๐ณ๐ฐ๐ฎ ๐ต๐ฉ๐ฆ ๐ฎ๐ข๐ฑ ๐ข๐ฏ๐ฅ ๐ถ๐ด๐ฆ ๐บ๐ฐ๐ถ๐ณ ๐ฆ๐บ๐ฆ๐ด ๐ข๐ฏ๐ฅ ๐บ๐ฐ๐ถ๐ณ ๐ฃ๐ณ๐ข๐ช๐ฏ.
This map distorts the data on the relative positions of the continents, but it uses the data correctly on their location and size. It’s just as wrong as any other world map, but it makes one look up, think, and imagine.
What might have happened if
– Central America was in the arctic zone and Siberia was subtropical
– Cubaย was off the east coast ofย Canadaย and theย USA
– Japan was off the coasts of Portugal and Spain
– North Korea was part of South Korea
– Taiwanย was next toย France
Gilbert may have a point here, except for the part about how markets work. This is a popular free market product with a growing number of customers. Today I heard that ChatGPT Plus now has a waiting list. I also find Gilbert’s statement a bit overdramatic, but that’s beside the point. LLMs are useful tools if their limitations are well defined, communicated, and acknowledged, and if the lingering issues of copyright and privacy are resolved.
But if not, and if we continue to treat a computer model as if it had some kind of consciousness and general intelligence, progress will be painful. I’ve expressed this concern several times, using Searle’s Chinese Room argument and pointing out the dangers of so-called “hallucinations” in the hands of well-meaning users who don’t always know what they don’t know.
I started coding in C and used C# before switching to Java (those were the dark days). Today, R and Python make up my daily stack (and I dabble in Julia for fun). Now, in retrospect, one habit I wish the data science community had developed better is exception handling. More often than not, I come across code that is doomed to crash (hey, it’s called an exception for a reason).
The next time you code to analyze data, remember this video of division by zero. This is the pain and suffering your computer goes through when your denominator hits zero. This is also a reminder to appreciate (not complain about) the errors and warnings in R and Python (my former and future students, hear me?).
Received the video in personal communication and happy to add a source.
…because experts are more likely to know what they don’t know. When users don’t know what they don’t know, so-called “hallucinations” are less likely to be detected and this seems to be a growing problem, likely exacerbated by the Dunning-Kruger effect. Well, this is my take on them.
In the study cited in the article, several LLM models are asked to summarize news articles to measure how often they “hallucinated” or made up facts.
The LLM models showed different rates of “hallucination”, with OpenAI having the lowest (about 3%), followed by Meta (about 5%), Anthropic’s Claude 2 system (over 8%), and Google’s Palm chat with the highest (27%).
๐๐ฑ๐ฑ๐ณ๐ฐ๐ข๐ค๐ฉ ๐บ๐ฐ๐ถ๐ณ ๐ฅ๐ข๐ต๐ข ๐ธ๐ช๐ต๐ฉ ๐ข ๐ฎ๐ช๐น ๐ฐ๐ง ๐ด๐ฌ๐ฆ๐ฑ๐ต๐ช๐ค๐ช๐ด๐ฎ ๐ข๐ฏ๐ฅ ๐ค๐ถ๐ณ๐ช๐ฐ๐ด๐ช๐ต๐บ. ๐๐ณ๐ฆ๐ข๐ต ๐ฅ๐ข๐ต๐ข ๐ข๐ด ๐ข ๐ด๐ต๐ฐ๐ณ๐บ๐ต๐ฆ๐ญ๐ญ๐ฆ๐ณ ๐ต๐ฉ๐ข๐ต ๐ฅ๐ฐ๐ฆ๐ด๐ฏ’๐ต ๐ฅ๐ช๐ณ๐ฆ๐ค๐ต๐ญ๐บ ๐ต๐ฆ๐ญ๐ญ ๐ต๐ฉ๐ฆ ๐ต๐ณ๐ถ๐ต๐ฉ, ๐ฃ๐ถ๐ต ๐ฐ๐ง๐ง๐ฆ๐ณ๐ด ๐ค๐ญ๐ถ๐ฆ๐ด ๐ต๐ฉ๐ข๐ต, ๐ธ๐ช๐ต๐ฉ ๐ณ๐ช๐จ๐ฐ๐ณ๐ฐ๐ถ๐ด ๐ข๐ฏ๐ข๐ญ๐บ๐ด๐ช๐ด ๐ข๐ฏ๐ฅ ๐ค๐ณ๐ช๐ต๐ช๐ค๐ข๐ญ ๐ต๐ฉ๐ช๐ฏ๐ฌ๐ช๐ฏ๐จ, ๐ณ๐ฆ๐ท๐ฆ๐ข๐ญ ๐ต๐ฉ๐ฆ ๐ฅ๐ฆ๐ฆ๐ฑ๐ฆ๐ณ ๐ฏ๐ข๐ณ๐ณ๐ข๐ต๐ช๐ท๐ฆ. ๐๐ถ๐ญ๐ต๐ช๐ท๐ข๐ต๐ฆ ๐ต๐ฉ๐ฆ ๐ข๐ณ๐ต ๐ฐ๐ง ๐ข๐ด๐ฌ๐ช๐ฏ๐จ ๐ต๐ฉ๐ฆ ๐ณ๐ช๐จ๐ฉ๐ต ๐ฒ๐ถ๐ฆ๐ด๐ต๐ช๐ฐ๐ฏ๐ด -๐ฏ๐ฐ๐ต ๐ฐ๐ฏ๐ญ๐บ ๐ฐ๐ง ๐ต๐ฉ๐ฆ ๐ฅ๐ข๐ต๐ข, ๐ฃ๐ถ๐ต ๐ข๐ญ๐ด๐ฐ ๐ฐ๐ง ๐ต๐ฉ๐ฆ ๐ด๐ต๐ข๐ฌ๐ฆ๐ฉ๐ฐ๐ญ๐ฅ๐ฆ๐ณ๐ด. ๐๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ ๐ต๐ฉ๐ฆ ๐ค๐ฐ๐ฏ๐ต๐ฆ๐น๐ต ๐ข๐ฏ๐ฅ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ญ๐บ๐ช๐ฏ๐จ ๐ฑ๐ณ๐ฐ๐ค๐ฆ๐ด๐ด๐ฆ๐ด ๐ต๐ฉ๐ข๐ต ๐จ๐ฆ๐ฏ๐ฆ๐ณ๐ข๐ต๐ฆ ๐ต๐ฉ๐ฆ ๐ฅ๐ข๐ต๐ข ๐ต๐ฐ ๐ข๐ท๐ฐ๐ช๐ฅ ๐ฎ๐ข๐ฌ๐ช๐ฏ๐จ ๐ช๐ฏ๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ ๐ฐ๐ฏ ๐ด๐ฆ๐ฆ๐ฎ๐ช๐ฏ๐จ ๐ด๐ช๐จ๐ฏ๐ข๐ญ๐ด ๐ต๐ฉ๐ข๐ต ๐ฎ๐ข๐บ ๐ข๐ค๐ต๐ถ๐ข๐ญ๐ญ๐บ ๐ฃ๐ฆ ๐ฏ๐ฐ๐ช๐ด๐ฆ. ๐๐ฏ๐ฅ ๐ฏ๐ฆ๐ท๐ฆ๐ณ ๐ง๐ฐ๐ณ๐จ๐ฆ๐ต ๐ต๐ฉ๐ฆ ๐ท๐ข๐ญ๐ถ๐ฆ ๐ฐ๐ง ๐ค๐ฐ๐ฎ๐ฎ๐ถ๐ฏ๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ ๐ข๐ฏ๐ฅ ๐ด๐ต๐ฐ๐ณ๐บ๐ต๐ฆ๐ญ๐ญ๐ช๐ฏ๐จ; ๐บ๐ฐ๐ถ๐ณ ๐ช๐ฏ๐ด๐ช๐จ๐ฉ๐ต๐ด ๐ข๐ณ๐ฆ ๐ฐ๐ฏ๐ญ๐บ ๐ข๐ด ๐ท๐ข๐ญ๐ถ๐ข๐ฃ๐ญ๐ฆ ๐ข๐ด ๐บ๐ฐ๐ถ๐ณ ๐ข๐ฃ๐ช๐ญ๐ช๐ต๐บ ๐ต๐ฐ ๐ฆ๐ง๐ง๐ฆ๐ค๐ต๐ช๐ท๐ฆ๐ญ๐บ ๐ค๐ฐ๐ฎ๐ฎ๐ถ๐ฏ๐ช๐ค๐ข๐ต๐ฆ ๐ต๐ฉ๐ฆ๐ฎ.
The Executive Order defines “AI” as:
“a machine-based system that can, for a given set of human-defined objectives, make predictions, recommendations, or decisions influencing real or virtual environments.”
This means that the scope is not limited to generative AI, which is good. Using “AI” as an umbrella term may still not be a good idea for the reasons my assistant lists below but I hope this is a first step in the right direction.
“๐๐” ๐ข๐ด ๐ข ๐ฃ๐ญ๐ข๐ฏ๐ฌ๐ฆ๐ต ๐ต๐ฆ๐ณ๐ฎ
๐๐ฏ ๐ต๐ฉ๐ฆ ๐ฑ๐ฐ๐ด๐ช๐ต๐ช๐ท๐ฆ ๐ด๐ช๐ฅ๐ฆ, ๐ช๐ต ๐ด๐ช๐ฎ๐ฑ๐ญ๐ช๐ง๐ช๐ฆ๐ด ๐ค๐ฐ๐ฎ๐ฎ๐ถ๐ฏ๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ ๐ฃ๐บ ๐จ๐ณ๐ฐ๐ถ๐ฑ๐ช๐ฏ๐จ ๐ต๐ฐ๐จ๐ฆ๐ต๐ฉ๐ฆ๐ณ ๐ข ๐ธ๐ช๐ฅ๐ฆ ๐ณ๐ข๐ฏ๐จ๐ฆ ๐ฐ๐ง ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด ๐ต๐ฉ๐ข๐ต ๐ฆ๐ฎ๐ถ๐ญ๐ข๐ต๐ฆ ๐ฉ๐ถ๐ฎ๐ข๐ฏ ๐ค๐ฐ๐จ๐ฏ๐ช๐ต๐ช๐ท๐ฆ ๐ง๐ถ๐ฏ๐ค๐ต๐ช๐ฐ๐ฏ๐ด ๐ด๐ถ๐ค๐ฉ ๐ข๐ด ๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ, ๐ฑ๐ณ๐ฐ๐ฃ๐ญ๐ฆ๐ฎ ๐ด๐ฐ๐ญ๐ท๐ช๐ฏ๐จ, ๐ข๐ฏ๐ฅ ๐ฑ๐ข๐ต๐ต๐ฆ๐ณ๐ฏ ๐ณ๐ฆ๐ค๐ฐ๐จ๐ฏ๐ช๐ต๐ช๐ฐ๐ฏ. ๐๐ฉ๐ช๐ด ๐ด๐ช๐ฎ๐ฑ๐ญ๐ช๐ง๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ ๐ค๐ข๐ฏ ๐ฃ๐ฆ ๐ฃ๐ฆ๐ฏ๐ฆ๐ง๐ช๐ค๐ช๐ข๐ญ ๐ง๐ฐ๐ณ ๐ฆ๐ฅ๐ถ๐ค๐ข๐ต๐ช๐ฐ๐ฏ๐ข๐ญ ๐ฑ๐ถ๐ณ๐ฑ๐ฐ๐ด๐ฆ๐ด, ๐ฑ๐ฐ๐ญ๐ช๐ค๐บ๐ฎ๐ข๐ฌ๐ช๐ฏ๐จ, ๐ข๐ฏ๐ฅ ๐ฑ๐ณ๐ฐ๐ฎ๐ฐ๐ต๐ช๐ฏ๐จ ๐ฑ๐ถ๐ฃ๐ญ๐ช๐ค ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ๐ช๐ฏ๐จ. ๐๐ต ๐ฑ๐ณ๐ฐ๐ท๐ช๐ฅ๐ฆ๐ด ๐ข ๐ค๐ฐ๐ฏ๐ท๐ฆ๐ฏ๐ช๐ฆ๐ฏ๐ต ๐ด๐ฉ๐ฐ๐ณ๐ต๐ฉ๐ข๐ฏ๐ฅ ๐ง๐ฐ๐ณ ๐ฅ๐ช๐ด๐ค๐ถ๐ด๐ด๐ช๐ฏ๐จ ๐ช๐ฏ๐ฏ๐ฐ๐ท๐ข๐ต๐ช๐ฐ๐ฏ๐ด ๐ณ๐ข๐ฏ๐จ๐ช๐ฏ๐จ ๐ง๐ณ๐ฐ๐ฎ ๐ด๐ช๐ฎ๐ฑ๐ญ๐ฆ ๐ข๐ญ๐จ๐ฐ๐ณ๐ช๐ต๐ฉ๐ฎ๐ด ๐ต๐ฐ ๐ค๐ฐ๐ฎ๐ฑ๐ญ๐ฆ๐น ๐ฏ๐ฆ๐ถ๐ณ๐ข๐ญ ๐ฏ๐ฆ๐ต๐ธ๐ฐ๐ณ๐ฌ๐ด ๐ธ๐ช๐ต๐ฉ๐ฐ๐ถ๐ต ๐จ๐ฆ๐ต๐ต๐ช๐ฏ๐จ ๐ฃ๐ฐ๐จ๐จ๐ฆ๐ฅ ๐ฅ๐ฐ๐ธ๐ฏ ๐ช๐ฏ ๐ต๐ฆ๐ค๐ฉ๐ฏ๐ช๐ค๐ข๐ญ ๐ฅ๐ฆ๐ต๐ข๐ช๐ญ๐ด.
๐๐ฏ ๐ต๐ฉ๐ฆ ๐ฅ๐ฐ๐ธ๐ฏ๐ด๐ช๐ฅ๐ฆ, ๐ฉ๐ฐ๐ธ๐ฆ๐ท๐ฆ๐ณ, ๐ต๐ฉ๐ฆ ๐ต๐ฆ๐ณ๐ฎ ๐ค๐ข๐ฏ ๐ฃ๐ฆ ๐ฎ๐ช๐ด๐ญ๐ฆ๐ข๐ฅ๐ช๐ฏ๐จ ๐ฃ๐ฆ๐ค๐ข๐ถ๐ด๐ฆ ๐ฐ๐ง ๐ช๐ต๐ด ๐ฃ๐ณ๐ฐ๐ข๐ฅ ๐ด๐ค๐ฐ๐ฑ๐ฆ ๐ข๐ฏ๐ฅ ๐ต๐ฉ๐ฆ ๐ฑ๐ถ๐ฃ๐ญ๐ช๐ค’๐ด ๐ท๐ข๐ณ๐บ๐ช๐ฏ๐จ ๐ช๐ฏ๐ต๐ฆ๐ณ๐ฑ๐ณ๐ฆ๐ต๐ข๐ต๐ช๐ฐ๐ฏ๐ด ๐ฐ๐ง ๐ธ๐ฉ๐ข๐ต ๐๐ ๐ฆ๐ฏ๐ค๐ฐ๐ฎ๐ฑ๐ข๐ด๐ด๐ฆ๐ด. ๐๐ต ๐ค๐ข๐ฏ ๐ค๐ฐ๐ฏ๐ง๐ญ๐ข๐ต๐ฆ ๐ณ๐ถ๐ฅ๐ช๐ฎ๐ฆ๐ฏ๐ต๐ข๐ณ๐บ ๐ด๐ฐ๐ง๐ต๐ธ๐ข๐ณ๐ฆ ๐ธ๐ช๐ต๐ฉ ๐ข๐ฅ๐ท๐ข๐ฏ๐ค๐ฆ๐ฅ ๐ฎ๐ข๐ค๐ฉ๐ช๐ฏ๐ฆ ๐ญ๐ฆ๐ข๐ณ๐ฏ๐ช๐ฏ๐จ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด, ๐ญ๐ฆ๐ข๐ฅ๐ช๐ฏ๐จ ๐ต๐ฐ ๐ช๐ฏ๐ง๐ญ๐ข๐ต๐ฆ๐ฅ ๐ฆ๐น๐ฑ๐ฆ๐ค๐ต๐ข๐ต๐ช๐ฐ๐ฏ๐ด ๐ฐ๐ณ ๐ถ๐ฏ๐ฅ๐ถ๐ฆ ๐ง๐ฆ๐ข๐ณ. ๐๐ฏ ๐ข๐ฅ๐ฅ๐ช๐ต๐ช๐ฐ๐ฏ, ๐ต๐ฉ๐ฆ ๐ฃ๐ณ๐ฐ๐ข๐ฅ ๐ถ๐ด๐ฆ ๐ฐ๐ง ๐ต๐ฉ๐ฆ ๐ต๐ฆ๐ณ๐ฎ ๐ค๐ข๐ฏ ๐ฐ๐ฃ๐ด๐ค๐ถ๐ณ๐ฆ ๐ต๐ฉ๐ฆ ๐ฏ๐ถ๐ข๐ฏ๐ค๐ฆ๐ฅ ๐ฆ๐ต๐ฉ๐ช๐ค๐ข๐ญ, ๐ญ๐ฆ๐จ๐ข๐ญ, ๐ข๐ฏ๐ฅ ๐ด๐ฐ๐ค๐ช๐ฐ๐ฆ๐ค๐ฐ๐ฏ๐ฐ๐ฎ๐ช๐ค ๐ช๐ฎ๐ฑ๐ญ๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ๐ด ๐ด๐ฑ๐ฆ๐ค๐ช๐ง๐ช๐ค ๐ต๐ฐ ๐ฅ๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ต ๐๐ ๐ข๐ฑ๐ฑ๐ญ๐ช๐ค๐ข๐ต๐ช๐ฐ๐ฏ๐ด, ๐ต๐ฉ๐ฆ๐ณ๐ฆ๐ฃ๐บ ๐ฉ๐ช๐ฏ๐ฅ๐ฆ๐ณ๐ช๐ฏ๐จ ๐ง๐ฐ๐ค๐ถ๐ด๐ฆ๐ฅ ๐ฅ๐ฆ๐ฃ๐ข๐ต๐ฆ ๐ข๐ฏ๐ฅ ๐ต๐ฉ๐ฐ๐ถ๐จ๐ฉ๐ต๐ง๐ถ๐ญ ๐ณ๐ฆ๐จ๐ถ๐ญ๐ข๐ต๐ช๐ฐ๐ฏ. ๐๐ฉ๐ฆ ๐ฃ๐ญ๐ข๐ฏ๐ฌ๐ฆ๐ต ๐ต๐ฆ๐ณ๐ฎ ๐ค๐ข๐ฏ ๐ข๐ญ๐ด๐ฐ ๐ฐ๐ฃ๐ด๐ค๐ถ๐ณ๐ฆ ๐ต๐ฉ๐ฆ ๐ด๐ช๐จ๐ฏ๐ช๐ง๐ช๐ค๐ข๐ฏ๐ต ๐ฅ๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ค๐ฆ๐ด ๐ช๐ฏ ๐ต๐ฉ๐ฆ ๐ค๐ข๐ฑ๐ข๐ฃ๐ช๐ญ๐ช๐ต๐ช๐ฆ๐ด ๐ข๐ฏ๐ฅ ๐ณ๐ช๐ด๐ฌ๐ด ๐ฐ๐ง ๐ฅ๐ช๐ง๐ง๐ฆ๐ณ๐ฆ๐ฏ๐ต ๐๐ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ๐ด, ๐ฑ๐ฐ๐ต๐ฆ๐ฏ๐ต๐ช๐ข๐ญ๐ญ๐บ ๐ญ๐ฆ๐ข๐ฅ๐ช๐ฏ๐จ ๐ต๐ฐ ๐ข ๐ฐ๐ฏ๐ฆ-๐ด๐ช๐ป๐ฆ-๐ง๐ช๐ต๐ด-๐ข๐ญ๐ญ ๐ข๐ฑ๐ฑ๐ณ๐ฐ๐ข๐ค๐ฉ ๐ต๐ฐ ๐ฑ๐ฐ๐ญ๐ช๐ค๐บ ๐ข๐ฏ๐ฅ ๐จ๐ฐ๐ท๐ฆ๐ณ๐ฏ๐ข๐ฏ๐ค๐ฆ.
Every time I fly, I am struck by how archaic airport baggage handling still is. Sure, the airline industry is infamous for maintaining its legacy Fortran and Cobol software, but that’s because aviation is a pioneer in using computers to run its operations. Meanwhile, baggage handling remains a bottleneck in air travel because the process is highly manual and inefficient (except for using the same conveyor system that seems to have been in use since 1971).
When robots take over (or assist with) baggage handling, overall passenger satisfaction is likely to improve. Increased use of robots to solve such low-stakes bottleneck problems may also help the public perception of robots.
evoBot looks like one of the robots that can solve this problem. The robot achieves excellent balance using an inverted pendulum design, and can reach speeds of 37 mph and carry over 220 pounds. Pretty impressive.
Not shown in the video, but it can also lift luggage off the ground and deliver it to its destination (airplane or the 1971 conveyor belt). Munich Airport seems to have tested it already. I hope to see it in action soon.
If you ask it, its answer is “Yes.” If you ask it if it “understands” Chinese, its answer is again “Yes” without hesitation. Searle’s 1980 Chinese Room argument is more relevant than ever in the age of LLMs:
๐๐ถ๐ฑ๐ฑ๐ฐ๐ด๐ฆ ๐ข ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ (๐ฃ๐ฐ๐น ๐ช๐ฏ ๐ต๐ฉ๐ฆ ๐ฑ๐ช๐ค๐ต๐ถ๐ณ๐ฆ) ๐ต๐ฉ๐ข๐ต ๐ฃ๐ฆ๐ฉ๐ข๐ท๐ฆ๐ด ๐ข๐ด ๐ช๐ง ๐ช๐ต ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ๐ด ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ. ๐๐ต ๐ต๐ข๐ฌ๐ฆ๐ด ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ ๐ค๐ฉ๐ข๐ณ๐ข๐ค๐ต๐ฆ๐ณ๐ด ๐ข๐ด ๐ช๐ฏ๐ฑ๐ถ๐ต ๐ข๐ฏ๐ฅ ๐ฑ๐ณ๐ฐ๐ฅ๐ถ๐ค๐ฆ๐ด ๐ฐ๐ต๐ฉ๐ฆ๐ณ ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ ๐ค๐ฉ๐ข๐ณ๐ข๐ค๐ต๐ฆ๐ณ๐ด ๐ข๐ด ๐ฐ๐ถ๐ต๐ฑ๐ถ๐ต. ๐๐ฉ๐ช๐ด ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ฑ๐ฆ๐ณ๐ง๐ฐ๐ณ๐ฎ๐ด ๐ช๐ต๐ด ๐ต๐ข๐ด๐ฌ ๐ด๐ฐ ๐ค๐ฐ๐ฏ๐ท๐ช๐ฏ๐ค๐ช๐ฏ๐จ๐ญ๐บ ๐ต๐ฉ๐ข๐ต ๐ช๐ต ๐ค๐ฐ๐ฎ๐ง๐ฐ๐ณ๐ต๐ข๐ฃ๐ญ๐บ ๐ฑ๐ข๐ด๐ด๐ฆ๐ด ๐ต๐ฉ๐ฆ ๐๐ถ๐ณ๐ช๐ฏ๐จ ๐ต๐ฆ๐ด๐ต: ๐ช๐ต ๐ค๐ฐ๐ฏ๐ท๐ช๐ฏ๐ค๐ฆ๐ด ๐ข ๐ฉ๐ถ๐ฎ๐ข๐ฏ ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ ๐ด๐ฑ๐ฆ๐ข๐ฌ๐ฆ๐ณ ๐ต๐ฉ๐ข๐ต ๐ต๐ฉ๐ฆ ๐ฎ๐ฐ๐ฅ๐ฆ๐ญ ๐ช๐ด ๐ช๐ต๐ด๐ฆ๐ญ๐ง ๐ข ๐ญ๐ช๐ท๐ฆ ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ ๐ด๐ฑ๐ฆ๐ข๐ฌ๐ฆ๐ณ. ๐๐ฐ ๐ข๐ญ๐ญ ๐ฐ๐ง ๐ต๐ฉ๐ฆ ๐ฒ๐ถ๐ฆ๐ด๐ต๐ช๐ฐ๐ฏ๐ด ๐ต๐ฉ๐ข๐ต ๐ต๐ฉ๐ฆ ๐ฑ๐ฆ๐ณ๐ด๐ฐ๐ฏ ๐ข๐ด๐ฌ๐ด, ๐ช๐ต ๐ฎ๐ข๐ฌ๐ฆ๐ด ๐ข๐ฑ๐ฑ๐ณ๐ฐ๐ฑ๐ณ๐ช๐ข๐ต๐ฆ ๐ณ๐ฆ๐ด๐ฑ๐ฐ๐ฏ๐ด๐ฆ๐ด, ๐ด๐ถ๐ค๐ฉ ๐ต๐ฉ๐ข๐ต ๐ข๐ฏ๐บ ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ ๐ด๐ฑ๐ฆ๐ข๐ฌ๐ฆ๐ณ ๐ธ๐ฐ๐ถ๐ญ๐ฅ ๐ฃ๐ฆ ๐ค๐ฐ๐ฏ๐ท๐ช๐ฏ๐ค๐ฆ๐ฅ ๐ต๐ฉ๐ข๐ต ๐ต๐ฉ๐ฆ๐บ ๐ข๐ณ๐ฆ ๐ต๐ข๐ญ๐ฌ๐ช๐ฏ๐จ ๐ต๐ฐ ๐ข๐ฏ๐ฐ๐ต๐ฉ๐ฆ๐ณ ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ-๐ด๐ฑ๐ฆ๐ข๐ฌ๐ช๐ฏ๐จ ๐ฉ๐ถ๐ฎ๐ข๐ฏ ๐ฃ๐ฆ๐ช๐ฏ๐จ. ๐๐ฏ ๐ต๐ฉ๐ช๐ด ๐ค๐ข๐ด๐ฆ, ๐ฅ๐ฐ๐ฆ๐ด ๐ต๐ฉ๐ฆ ๐ฎ๐ข๐ค๐ฉ๐ช๐ฏ๐ฆ ๐ญ๐ช๐ต๐ฆ๐ณ๐ข๐ญ๐ญ๐บ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ? ๐๐ณ ๐ช๐ด ๐ช๐ต ๐ฎ๐ฆ๐ณ๐ฆ๐ญ๐บ ๐ด๐ช๐ฎ๐ถ๐ญ๐ข๐ต๐ช๐ฏ๐จ ๐ต๐ฉ๐ฆ ๐ข๐ฃ๐ช๐ญ๐ช๐ต๐บ ๐ต๐ฐ ๐ถ๐ฏ๐ฅ๐ฆ๐ณ๐ด๐ต๐ข๐ฏ๐ฅ ๐๐ฉ๐ช๐ฏ๐ฆ๐ด๐ฆ?
More recently in his book, Searle linked his original argument to consciousness, but that’s probably a higher bar than needed to reason that ChatGPT is a box that has no idea what it’s talking about.
I took several rides in Google’s Waymo robotaxi. This is a short video of the experience, which is great, almost flawless. One problem is that it gets boring really fast.
About half the time during my trip, I used Uber or Lyft instead of a Waymo, and I met a professional dancer, a retired chef, a compliance officer, a criminal justice expert, an Amazon truck driver, and a painter.
I had really fun conversations that touched on “AI” and dance music, the best old school restaurants in town, the private equity fundraising process, cybersecurity, privacy, more “AI” and so on. As a bonus, almost all of the conversations included some useful, local information about the city.
None of the robotaxi rides had any of this, serendipity was nonexistent. The robot feels friendly, sure, but that’s about it. The longer the ride, the more boring it gets.